
Report on Approximation Schemes for
0-1 Knapsack

Seminar Advanced Algorithms and Data Structures

Jan Wiegner

November 4, 2018

This is a report on the conference paper Approximation Schemes for 0-1
Knapsack [1] by Timothy M. Chan, and is heavily based on it. Additional
explanations are mostly based on the Master’s Thesis of Donguk Rhee[2].

Problem Introduction

Knapsack problems are a class of optimization problems, where we are given a set of n
items. The items are indexed by i ∈ {1, 2, ..., n} and an item i has weight wi and profit
pi. We write our set as: I = {(w1, p1), · · · , (wn, pn)}. The 0-1 Knapsack Problem, which
we will be focusing on is to select a subset of these items that maximizes the total profit
under the constraint that total weight is bounded by a given input value, the maximum
Capacity W . More formally, we are searching for:

max
s⊆I

 ∑
(wi,pi)∈s

pi :
∑

(wi,pi)∈s

wi ≤W


We will focus in this report on how to find the optimal profit, which we will note S,

not directly on how to recover the subset witch attains i, which we note x∗. We consider
a small example of the 0-1 Knapsack problem with input:
I = {(5, 6), (4, 4), (4, 4)} and W = 8.
A greedy algorithm would pick the first element (5, 6) as it has the biggest profit-density,
i.e. the most profit per weight. This would give us a profit of 6. The optimal solution
however would be to pick the second and third element, where we get profit 8, i.e.
x∗ = {(4, 4), (4, 4)} and S = 8.

Knapsack problems are NP-hard. However, their simplicity attracted many theoreti-
cians and practitioners to research these problems, dating back to 1897[3]. This has
resulted in many published exact algorithms and approximation algorithms.

1

Dynamic Programming

Before looking at approximation algorithms, we will first revisit the standard dynamic
programming approach to get the exact value to the problem.

We will assume from now on that the 0-1 Knapsack Problem does not contain items
with weight greater than W . Such items can be removed in O(n) time and do not change
the solution, so it is safe to make this assumption.
We then define the more general function

fI(x) := max
s⊆I

 ∑
(wi,pi)∈s

pi :
∑

(wi,pi)∈s

wi ≤ x


This function fully specifies our problem, as the optimal value we want to find x∗ is
fI(W). The standard dynamic programming approach consists of calculating fI(W) by
calculating all the other values of fI in a dynamic programming table. In the table we
use the following abbreviations:
fi:j(x) := f{(wi,pi),···,(wj ,pj)}(x), where fi:i(x) := f{(wi,pi)}(x).

x f1:1(x) f1:2(x) · · · f1:n(x)

0 f1:1(0) f1:2(0) · · · f1:n(0)

1 f1:1(1) f1:2(1) · · · f1:n(1)

· · · · · · · · · . . . · · ·

W f1:1(W) f1:2(W) · · · f1:n(W)

We fill the table from the left and the top. Each table entry is calculated by deciding
if we get a higher profit by including the element with the highest index or ignoring it.
More formally:

f1:i(x) = max {f1:i−1(x− wi) + pi, f1:i−1(x)}

The solution can directly be read in the bottom right corner.
Each field in the table is calculated in constant time by looking at two other table entries
and a constant number of operations. We have nW table entries so this approach gives
us an algorithm that runs in O(nW) time. It isn’t necessary in general have to compute
the whole table, but even using recursion with memorization (to not recalculate recursive
calls we have already made) the worst case time complexity doesn’t change. This isn’t
very satisfying, as the runtime now depends on the capacity W , but as it is a NP-hard
problem, we weren’t going to get something fully polynomial in n anyway.

We can however change the algorithm like this: rather than considering the maximum
profit for a given weight, we can try to find the minimum weight for a given profit. For
this we define :

2

gI(x) := min
s⊆I

 ∑
(wi,pi)∈s

wi :
∑

(wi,pi)∈s

pi ≥ x


This means that our optimal profit x∗ will be the biggest x for witch gI(x) ≤W

Let P be the maximal profits pi in an instance of the 0-1 Knapsack Problem. Then
the possible total profits are in the range of [0;nP]. We can then fill out the following
dynamic programming table to obtain our desired value. In the table we use the following
abbreviations:
gi:j(x) := g{(wi,pi),···,(wj ,pj)}(x) , with gi:i(x) := g{(wi,pi)}(x)

x g1:1(x) g1:2(x) · · · g1:n(x)

0 g1:1(0) g1:2(0) · · · g1:n(0)

1 g1:1(1) g1:2(1) · · · g1:n(1)

· · · · · · · · · . . . · · ·

nP g1:1(nP) g1:2(nP) · · · g1:n(nP)

Again we fill the table from the left and the top. Each table entry is calculated by
deciding if we get a lower weight by including the element with the highest index or
ignoring it. More formally:

g1:i(x) = min {g1:i−1(x− pi) + wi, g1:i−1(x)}

To obtain the solution we simply scan the table for the highest profit that has our given
capacity W (or less). Again, each field in the table is calculated in constant time, so
this approach gives us an algorithm that runs in O(n2P) time.

Approximation Algorithms[2]

Since the 0-1 Knapsack Problem is NP-hard, there is no algorithm with polynomial time
in just n assuming NP 6= P . However both of our solutions are dependent in time
complexity on factors W or P that can be arbitrarily large compared to n, and are out
of our control. There may however be applications where we need to have a runtime
bound independent from the values W or P , maybe because they are too large. The
way we will achieve this is that we abandon the requirement of finding a completely
optimal solution. We aim to find a solution that has small amount of error in a time
that depends on how much error we allow. That is, we want an algorithm where we can
freely compromise between time it takes and error it produces. This is the idea behind
approximation algorithms.

3

Simple FPTAS for Knapsack

In our case we have a maximization problem, so we can define an approximate solution
x′ with profit S′ such that:
S′(1 + ε) ≥ S where ε > 0 is a parameter that denotes our error.
First notice that our second dynamic programming algorithm is a polynomial algorithm
for 0-1 Knapsack Problem if the profits are polynomially bounded in n. This means it
is a polynomial algorithm if P is polynomial in size compared to n. We can therefore
think about scaling down the profits to make it always polynomial as follows:
∀i ∈ {1, 2, ..., n}, p′i = bpi/δc for some δ

This incurs some error due to the floor operation and our goal is that the relative error
on total profit is less than ε. The error for an item i is pi − δp′i = pi − δbpi/δc < δ. Let
x∗ be an optimal solution and S its total profit. We can assume S ≥ P as there are no
items with weight greater than W . The total error would then be less than δn

S as there
are at most n items in x∗.

Because we want δn
S ≤

δn
P ≤ ε, we pick δ = εP

n .
Using our dynamic programming algorithm with complexity O(n2P), we can solve the

scaled down problem in

O(n2bP/δc) = O
(
n2
n

ε

)
= O

(
1

ε
n3
)

To obtain the solution to our original problem we simply rescale up by δ the solution
to our downscaled problem. We get an algorithm that has polynomial run-time in
both n and 1/ε. In general we call this type of algorithm a fully polynomial time
approximation scheme (FPTAS).

Fully Polynomial Time Approximation Scheme

More formally: Suppose we have a maximization problem maxx z(x) as is the case of
the 0-1 Knapsack Problem. Suppose that the size of the instance of the problem is n
and that x∗ is an optimal solution.

We define a fully polynomial time approximation scheme (FPTAS) is as an
algorithm that takes an instance of the maximization problem and a parameter ε > 0
and has the following properties:

• It is guaranteed to produce a solution x′ such that z(x′)(1 + ε) > z(x∗)

• It runs in polynomial run-time in both n and 1/ε.

We will be focusing on FPTAS in this report. The 0-1 Knapsack Problem is important
for being one of the first NP-hard problems shown to possess FPTAS.

Preliminaries for more advanced methods[1]

Input Simplifications

Before we continue, we notice that we can do two simplifications on the input:

4

• We can discard all items with pi ≤ ε
nP (we still have P = maxj pj).

We can do this, because it removes less than n items (all ≤ ε
nP) and thus changes the

optimal value by at most εP . Because the optimal value must be bigger than P this is
an error of at most 1 + ε of the optimal value. We also have that the minimal profit is
now at least ε

nP . This means we can assume that
maxj pj
minj pj

≤ P
ε
n
P = n

ε .

• We round all pi to a power of 1 + ε.

This gives us a error of at most 1 + ε for each profit, so the total error is also at most
1 + ε

Let m be the number of different profits we have after this rounding. For the rounding
we use powers of 1 + ε between log1+ε minj pj and log1+ε maxj pj , so we have:

m = log1+ε max
j
pj−log1+ε min

j
pj = log1+ε

maxj pj
minj pj

≤ log1+ε
n

ε
=

log n
ε

log(1 + ε)
∈ O

(
log n

ε

ε

)
(For ε close to 0, ε is the best linear approximation we can get for log(1 + ε).)

0.5 1 1.5 2 2.5 3

0.5

1

1.5

2

ε

log(1 + ε)
x

f(x)

We therefore have at most m ∈ O(1ε log n
ε) distinct profit values.

In the rest of our analysis we will use the Õ (read soft-O) notation, witch is like the O
notation but hides polylogarithmic factors in n and 1

ε . That means O(n log n+ 1
ε log 1

ε) =

Õ(n+ 1
ε) and in our case m ∈ Õ(1ε).

Pseudo-concave and p-uniform

In the previous section we saw a FPTAS that approximated gI(x). From now on will
now look at (the outline of) how to make a FPTAS that approximates fI(x).

For this we adopt a “functional” approach in presenting our algorithms, which does not
need explicit reference to dynamic programming, and makes analysis of approximation
factors more elegant. Note that we can generalize fI so that it can accept all values for
x ∈ R and that it is a monotone non-decreasing step function. This means it should
look something like this:

5

5 10 15 20

2

4

6

8

10

x

f(x)

Suppose we split our input set I into two disjoint sets Ia and Ib. Even if we had fIa
and fIb we would have to combine them somehow to get fI . To combine them we have
to use (max,+)− convolution:

fI(x) = (fIa ⊕ fIb)(x) = max
x′∈R

(fIa(x′) + fIb(x− x
′))

We have fI = fIa ⊕ fIb (the operator ⊕ denotes the (max,+)− convolution)
We now look at the special case where all pi’s in I for a fI are equal to a common

value p. If we first sort the items in non-decreasing order of wi, the function fI is easy
to compute with a greedy algorithm in time O(|I|) = O(n). We have:

• The function values are −∞, 0, p, 2p, · · · , np

• The x-breakpoints are 0, w1, w1 + w2, · · · , w1 + · · ·+ wn

In general we say a step function is p-uniform if:

• The function values are of the form −∞, 0, p, 2p, · · · , lp for some l

1 2 3 4 5 6

2

4

6

8

p

p

p

x

f(x)

6

We say a p-uniform step function is pseudo-concave if:

• The sequence of differences of consecutive x-breakpoints is non-decreasing (i.e. the
distance between breakpoints increases)

1 2 3 4 5 6

2

4

6

8

x

x+ δ1

x+ δ1 + δ2

x

f(x)

(in the graph δ1, δ2 ≥ 0)

In the case where the pi’s are all equal, fI is indeed uniform and pseudo-concave.

Coming back to our original problem, because we know that we have at most m ∈ Õ(1ε)
distinct profits in our input set I. We can therefore split I in m disjoint sets where
each only has one distinct pi value in the set. For each of these sets Ik with index
k ∈ {1, 2, ...,m} we can compute fk = fIk using the greedy algorithm. (Here computing
fk means calculating fk for all values.) The time this takes is :

• O(n log n) to sort by profit and split into sets

• O(n log n) to sort by weight and calculate all fi’s greedily

The original problem is now reduced to calculating a (1 + O(ε)) factor approximation
of a monotone step function, which is the ⊕ of m ∈ Õ(1ε) uniform, pseudo-concave,
monotone step functions.

Outline of Algorithm with Exponent 5/2 [1]

We now want to calculate the (max,+) − convolution of a set of m functions (where
each is a uniform, pseudo-concave, monotone step function). I won’t talk here about
how to efficiently calculate the (max,+)−convolution of two functions, but will instead
talk about a trick on how to compose these functions.

If f and h are monotone step functions with total complexity l (i.e. sum of different
function values is l), we assume that it is possible to compute a (1+O(ε)) approximation
of f ⊕ h in time:

7

(i) O(l) + Õ((1ε)2) in general

(ii) O(l) + Õ(1ε) if h is p-uniform and pseudo-concave

We need to compose the m functions with the (max,+)− convolution.

Sequential approach

Our first approach is to calculate the (max,+)− convolutions sequentially. That is we
calculate:

((((f1 ⊕ f2)⊕ f3)⊕ · · ·)⊕ fm)

f1 f2 f3 fm

⊕

⊕

⊕

In each step we can use (ii) as at least one of the functions is p-uniform and pseudo-
concave. The total time is Õ(n)+Õ(m(1ε)). However, the approximation factor increases
to (1+O(ε))m. We can adjust ε by a factor of m to get back the error of 1+O(ε) because:

(1 +
ε

m
)m ≤ eε ≤ 1 + (e− 1)ε ≤ 1 +O(ε)

This increases the running time to:

Õ(n) + Õ

(
m · 1

ε/m

)
= Õ(n) + Õ

(
1

ε
m2

)
= Õ

(
n+

(
1

ε

)3
)

Divide-and-conquer approach

We could think that using a divide-and-conquer approach might be better. To do this
we split our set of functions into two and recursively calculate the convolution of each
set and combine them with a final convolution.
That is, approximating f1 ⊕ · · · ⊕ fm/2 and fm/2+1 ⊕ · · · ⊕ fm.

f1 f2 fm−1 fm

8

The recursion tree has O(m) nodes. According to (i) each has cost Õ((1ε)2), and we

have a total additional cost of Õ(n) for the leaves.
The approximation factor increases to (1 +O(ε))logm. It is possible to argue that:

(1 +O(ε))logm = 1 +O(ε logm)

Therefore our error 1 + O(ε logm) is too large by a factor of logm. We can adjust ε
by a factor of logm, which increases the running time only by polylogarithmic factors
(hidden in Õ). It gives us a time complexity:

Õ(n) + Õ

((
1

ε

)2

m

)
= Õ

(
n+

(
1

ε

)3
)

Hybrid approach

Finally, we can also use a hybrid method. The intuition is to use the incremental method
when m is small and the divide and conquer method when m is large.

Here is the precise algorithm:

1. Divide the set of given functions into r subsets of m
r functions, for a parameter r

to be specified later.

2. For each subset, approximate the ⊕ of its m
r pseudo-concave functions using the

sequential method (i.e. using (ii)).

3. Return an approximation of the ⊕ of the r resulting functions, by using the divide-
and-conquer method (i.e. using (i)).

f1 fm/r fm−(m/r) fm

The total time is:

Õ(n) + Õ

(
r

1

ε

(m
r

)2
+ (r − 1)

(
1

ε

)2
)

= Õ(n) + Õ

(
1

r

(
1

ε

)3

+ r

(
1

ε

)2
)

9

We get the minimum if r equal to a certain quantity r = d
√
εme ∈ Õ(ε−

1
2). This is

the case as the terms of the sum are linearly increasing and decreasing dependent on r,
and both terms of the sum become equal with our value of r. Then we get:

Õ(n) + Õ

(
ε

1
2

(
1

ε

)3

+ ε−
1
2

(
1

ε

)2
)

= Õ

(
n+

(
1

ε

)5/2
)

= Õ

(
n+

(
1

ε

)2.5
)

Additional insights

In overview in the best algorithm we:

• eliminiate too big and too small values

• roud the remaining inputs

• group them by same profit into m groups

• calculate the problem for each group

• combine the groups cleverly using (max,+)− convolution

By loosing simplicity it is possible to obtain an algorithm in

Õ

(
n+

(
1

ε

)12/5
)

= Õ

(
n+

(
1

ε

)2.4
)

This is achieved by avoiding some rounding operations and using a certain combinatorial/number-
theoretic lemma. (It states that all numbers can be approximated well by integer mul-
tiples of a small set of values.)

We saw how to use (max,+)−convolution to get a much better algorithm to compute a
function that we before computed in a dynamic programming table. But this can be used
in general for any function computed in a dynamic programming table witch computes
the extremum of a sum.

The main open question remaining for 0-1 Knapsack FPTASs is whether the running
time can be improved to near O(n+ (1ε)2).

I also want to mention that improved time bounds tell us how much accuracy we
can guarantee while keeping near-linear running time: If there exists an algorithm with
runtime in Õ(n+ (1ε)12/5), it allows to give a (1 + n−5/12)-approximate solution in Õ(n)
time.

Õ

(
n+

(
n5/12

)12/5)
= Õ(n)

As a final remark, we have described how to compute approximations of the optimal
value, but not how to compute a corresponding subset of items. To output the subset,
we can modify the algorithms to record extra information during execution, but this
does not increase the runtime. All we really have to do is store the argmax whenever
we calculate a max.

10

References

[1] Timothy M Chan. Approximation schemes for 0-1 knapsack. In OASIcs-OpenAccess
Series in Informatics, volume 61. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2018.

[2] Donguk Rhee. Faster fully polynomial approximation schemes for knapsack problems,
2015.

[3] George B Mathews. On the partition of numbers. Proceedings of the London Math-
ematical Society, 1(1):486–490, 1896.

11

