
Seminar on Advanced Algorithms and Data Structures

On the Exact Complexity of Polyomino Packing
Report from Börge Scheel

1 Introduction
The goal of the report is to introduce the problem of polyomino packing and determine a tight bound
(namely 2Θ(n/ logn), where n is the sum of the sizes of all polyominos that we get as input) on the
runtime complexity under the assumption that the exponential time hypothesis holds. We will do
this via reductions to other problems, which we already know. On the one hand, we will use a known
algorithm for planar Subgraph Isomorphism, that has itself runtime 2O(n/ logn) where n is the number
of vertices in both input graphs, to construct an algorithm for polyomino packing. On the other hand,
we will derive a lower bound on the runtime for the problem by reduction from 3-SAT. Note that this
lower bound will only hold if the exponential time hypothesis holds.

2 Polyomino Packing
We will start by introducing the problem of polyomino packing and defining what a polyomino is:

Definition 1. A polyomino is a geometric structure of 1×1-squares that are aligned edge to edge. It
must be connected and has to have no holes. We define the size of a polyomino p (|p|) as the number
of 1× 1-squares it consists of.

This rather formal definition will become clear if we take a look at examples of polyominoes. The
following picture shows all polyominoes with size 4 (without identical ones with respect to rotation
and reflection):

You probably know these polyominoes of size 4 also as Tetris-bricks. One could argue, that polyomi-
noes are generalizations of Tetris-bricks and polyomino-packing is a generalization of Tetris. We now
take a look at the formal definition:

Definition 2. For input (S, ptarget), where S is a set of polyominoes of possibly different size and
ptarget is a polyomino, there exists a polyomino packing if and only if it is possible to position
all polyominoes in S "on top of" ptarget, such that each square of each polyomino in S lies exactly
aligned on top of a square of the target polyomino. We don’t allow that polyominoes in S overlap in
the packing but we allow "holes" in the packing, i.e. it is possible that there are squares of the target
polyomino, where no square of any polyomino in S is positioned on. It is allowed to rotate and/or
flip the polyominoes. The problem of polyomino packing is to determine whether there exists such a
packing or not. The input size n is defined as n = |ptarget|+

∑
p∈S |p|.

1

Again, the definition becomes more intuitive, if we take a look at an example.
The input is given as:

S =


, ,



ptarget =

There exists a polyomino packing, namely:

Note that the "unused" squares of the target polyomino are marked grey and that the boundary lines
of the polyominoes are drawn thicker.

There are multiple variations of the problem. We could restrict the positioning of the polyominoes
to translation only (fixed polyomino packing) or only allow translation and rotation (one-sided poly-
omino packing). Furthermore, it is possible to require that the sum of all sizes of polyominoes in S is
equal to the size of the target polyomino (also called exact polyomino packing). In the report, we will
only look at the polyomino packing described in the definition (also called free polyomino packing).
Note that the reductions and proofs that I will show in this report can be modified slightly, such that
the bounds also hold for these variations.

3 Upper Bound
We will now construct an algorithm for polyomino packing which has runtime 2O(n/ logn). This proves
that the time complexity of polyomino packing is in 2O(n/ logn). We will use a reduction to planar
subgraph isomorphism, where it is known that there exists an algorithm (described in [2]) with run-
time 2O(n/ logn) where n is the number of vertices in both input graphs.

An algorithm for Subgraph isomorphism decides for two input graphs G and H whether H is isomor-
phic to a subgraph of G. This means intuitively, whether it is possible to remove edges and/or vertices
from G to get a subgraph G0 that „looks likeH“, i.e. whether there’s a bijection f between the vertices
of G0 and H such that {u, v} ∈ E(G0) ⇐⇒ {f(u), f(v)} ∈ E(H) and u ∈ V (G0) ⇐⇒ f(u) ∈ V (H).

A planar graph is a graph that can be embedded in the plane, i.e. it is possible to draw it on a paper
without any edges intersecting. Planar subgraph isomorphism, therefore, is the subgraph isomorphism
problem where G and H are restricted to be planar graphs.

2

3.1 Reduction
We will now show, how the reduction exactly works. Note that I modified the construction in the
paper by choosing a slightly different structure. The following pseudocode is meant to give a high-level
overview on how the reduction is structured. The exact construction will be described afterwards.

Algorithm 1: Polyomino packing (with planar subgraph-isomorphism)
Input : (S = {p1, ..., pk}, ptarget)
Output: true if there exists a polyomino packing, false otherwise

1 H ← (∅, ∅)
2 for i = 1, ..., k do
3 H ← H ∪ generateGraph(pi)
4 end
5 G← generateGraph(ptarget)
6 return PlanarSubgraphIsomorphism(G,H)

We will now describe the generateGraph function for an arbitrary polyomino p. For each square in
p, we insert the following structure:

Note that this graph is planar and that the vertex in the middle has degree 6.

Next, we will connect the structures of squares, that are aligned edge to edge at the corners of the
structures that correspond to the corners of the mutual edge. To visualize this, we will look at an
example:

⇒ ⇒

Note that the resulting graph is also planar and connected because the polyomino is connected itself.
Furthermore, only the vertices in the middle of the structures have degree > 5.

We now combine the graphs that we generated for the polyominoes in S and name it H. H now
consists of |S| components that are planar. Therefore H is planar. We name the graph generated for
the target polyomino G. We now call the algorithm for planar subgraph isomorphism and return the
result, as described in Algorithm 1.

We will again look at an example. The input-set is the same as in the example in the introduction.
Note that I draw the graphs in such a way, that the subgraph isomorphism and the original shapes of
the polyominoes are clearly visible.

H = G =

3

3.2 Runtime
We now want to analyze the runtime of the algorithm: For a polyomino p, generateGraph(p) and
the union can be executed in O(|p|). Therefore lines 1 to 5 can be executed in O(n). The number of
vertices in G and H is linear in n. Therefore the time required for line 6 is in 2O(n/ logn). Altogether
the runtime of the algorithm is 2O(n/ logn).

3.3 Correctness
Now we have to prove that the algorithm is correct, i.e

∃ polyomino packing for input (S, ptarget) ⇐⇒ PlanarSubgraphIsomorphism(G,H) = true

(⇒) Assume there is a polyomino packing for (S, ptarget). We now consider the graph G generated
by our algorithm from the target polyomino and remove all vertices of the structures that correspond
to a square of the target polyomino that is not used by one of the polyominoes in S. Afterwards, we
remove the connections between structures if the squares corresponding to the structures are used by
different polyominoes. We name this graph G0. We analyze, what is left if G0: For each square of
each polyomino in S there is a structure in the G0. Furthermore, between the structures of the same
polyomino, there are still the connections and structures of different polyominoes are not connected.
It is now easy to see that G0 is isomorphic to H generated by our algorithm. Therefore there exists
a subgraph isomorphism and our algorithm returns true.

(⇐) Assume, there is a subgraph isomorphism between G and H, which were generated by our algo-
rithm. We note that in a subgraph the degree of a particular vertex is smaller or equal to the degree
in the original graph. Because only the vertices in the middle of each structure have degree > 5, we
know that each middle vertex in H has to map to a middle vertex in G. We see, that because the
structure is the same for all squares both in G and H, each structure in H has to map to a structure in
G. If structures were connected in H (i.e. the squares were neighbors in a polyomino), they also have
to be connected in G. We can now identify a place were we can place the squares of the polyominoes:
We place it on the corresponding square in the target polyomino where the corresponding structure of
that square maps to. Because of the connections between structures, the squares of a polyomino are
placed in the correct way (i.e. it stays the same polyomino). This is a valid placement because two
structures from different squares of polyominoes in S cannot map to the same structure in the target
polyomino.

4 Lower Bound
The Lower Bound for polyomino packing is shown by reduction from the 3-SAT-problem. We briefly
revisit the 3-SAT problem:

Definition 3. A literal is either a variable (positive form) or a negation of a variable (negative
form). A clause is a disjunction of literals. A formula is in 3-CNF if and only if it’s a conjunction
of clauses, which each consist of at most 3 literals. A formula is satisfiable if and only if there exists
an assignment of variables to true or false, such that the formula is true. The problem of 3-SAT is
to determine whether a 3-CNF formula is satisfiable.

The shown proof only works if the exponential time hypothesis holds. We revisit the exponential time
hypothesis:

Definition 4. The Exponential Time Hypothesis (short: ETH) states that 3-SAT cannot be
solved in truly subexponential time (i.e. with runtime in 2o(n)) in the worst case. If the ETH holds,
this directly implies NP 6= P , because we know that 3-SAT is in NP .

In the reduction, we construct an algorithm for 3-SAT with help of a (theoretical) algorithm, that
solves Polyomino packing. We show, that if the runtime complexity of polyomino packing would not
be in 2Ω(n/ logn), we could solve 3-SAT in truly subexponential time what would contradict the ETH.
Therefore if the ETH holds, Polyomino packing is in 2Ω(n/ logn).

4

4.1 Reduction
Again we will look at the pseudocode, that is meant to give you a high-level overview over the
reduction. The exact definitions of the functions will be given afterwards.

Algorithm 2: 3-SAT (with Polyomino packing)
Input : n-variable 3-CNF formula Φ with m clauses
Output: true if Φ is satisfiable, false otherwise

1 Φ1, ...,Φl ← sparsification(Φ)
2 for i = 1, ..., l do
3 Φ′i ← reduceOccurences(Φi)
4 Si ← generatePolyominoes(Φ′i)
5 ptarget ← generateTargetPolyomino(Φ′i)
6 if PolyominoPacking(Si, ptarget) then
7 return true
8 end
9 end

10 return false

The sparsification of Φ is described in [3] and [4]. The algorithm uses backtracking to transform for
any fixed ε > 0 an arbitrary n-variable k-CNF formula into an equivalent disjunction of 2εn n-variable
k-CNF formulas that each have O(n) clauses (Φ ≡ Φ1 ∨ ... ∨ Φl). We want to have this condition be-
cause we want to have an upper bound on the size of the polyominoes that we will construct. Because
it is a disjunction, Φ is satisfied if and only if at least one of the Φ1, ...,Φl is satisfiable. Therefore we
can just look at a single Φi to proof the correctness.

We will first look at the reduceOccurences function: This is a standard derivation that has the goal
is to restrict how often each variable occurs in Φ′i. We do this by replacing each variable xj that
occurs k > 3 times by one of k new variables x1

j , ..., x
k
j and add the clauses (¬x1

j ∨ x2
j) ∧ (¬x2

j ∨ x3
j) ∧

... ∧ (¬xk−1
j ∨ xkj) ∧ (¬xkj ∨ x1

j). The added clauses ensure that all x1
j , ..., x

k
j have the same value in a

satisfying assignment. Furthermore, if some xj occurs only positive or only negative, we remove the
clauses, that contain xj . If xj occurs both positive and negative in the same clause, we remove this
clause. It is obviously the case, that Φ′i is satisfiable if and only if Φi is satisfiable. This step only
increases (or decreases) the total number of variables and clauses linearly and has only linear runtime.
Note that Φ′i is a n′ ∈ O(n)-variable 3-CNF formula with m′ ∈ O(n) clauses in with each variable
occurs at most 3 times and at least once positive and once negative. Therefore each variable occurs
at most twice positive and at most twice negative in Φ′i. We will need this condition in the following
construction.

4.2 Construction
The main idea of the construction is to look at Φ′i not as a conjunction of clauses, but from the
perspective of an assignment. We will construct for each variable xj a variable-setting polyomino that
must be placed in a packing into the so-called formula-encoding polyomino of xj . This will correspond
to assigning xj to true or false. We also want to have a clause-checking polyomino for each clause.
Each assignment of a variable can lead to clauses that are true. The idea is that the placement of
the variable-setting polyomino of xj blocks certain places where clause-checking polyominoes could
go and therefore only allow the placement of the clause-checking polyominoes which correspond to
clauses, which are true due to the chosen assignment of xj , in the formula-encoding polyomino of xj .
Therefore we need one polyomino per variable and one polyomino per clause and the target polyomino
that will consist of one polyomino per variable.

Note that I modified the construction and the proof from the paper.

5

We will use a special type of polyominoes that we can describe as a bitstring: Given a bitstring of
length h, its corresponding polyomino has two rows: The top one has a square on the j-th position
if and only if the bitstring has a 1 in the j-th position. The bottom row consists of h consecutive
squares. Therefore for every bitstring, the corresponding structure is a valid polyomino and its size is
smaller or equal to 2h. Note that this translation is injective. We will look at an example:

10110001 ⇒

We concatenate two polyominoes corresponding to bitstrings b1 and b2 by taking the polyomino cor-
responding to the concatenation of the two bitstrings b1 and b2. We say that a polyomino A fits into
a polyomino B if and only if polyominoPacking({A}, B) = true.

We want to construct the polyominoes in such a way that we can abstract it as a concatenation of
building blocks, which are defined by bitstrings. Furthermore, we want to restrict the placement of
the polyominoes in the packing to the placement of building blocks into building blocks. Therefore
we want to have the following properties:

• The building blocks should all have the same "width"
→ The bitstrings of the building blocks should have the same length.

• We don’t want to allow that the building blocks can overlap with multiple building blocks of
the target polyomino
→ special structure at the start and at the end of each building block

• We want that each clause/variable is identified uniquely (with rotation and flipping) by one
building block polyomino
→ Use unique and palindromic bitstrings

We label the variables and clauses uniquely with the numbers 1 to (n′ + m′) and associate a bit-
string with each of these identifiers. To ensure that building blocks cannot overlap with multiple
building blocks of the target polyomino, we choose as a identifying feature of the special structure 3
consecutive ones. Therefore we have to ensure that there are 3 consecutive ones in concatenations of
building blocks only at the positions of the special structures. To prevent that the concatenation of a
special structure with an arbitrary bitstring leads to more than 3 consecutive ones at the boundary,
we choose as special structure the bitstring 01110. To ensure that there are not 3 consecutive ones in
the bitstrings corresponding to the identifiers, we restrict the maximum number of consecutive ones
to 2. We do this by taking the dlog (n′ +m′)e-bit binary representation of that number (unique and
same length), replacing every 0 by 01 and every 1 by 10 (thus ensuring that the bitstring contains
at most 2 consecutive ones and same length) and then appending a reversed copy of the bitstring to
itself (making it palindromic). Afterwards we add the special structure 01110 at the start and at the
end. The bitstring of the building block has now length 10 + 4dlog (n′ +m′)e. Now, the only places
where 3 consecutive ones are in the concatenation of bitstrings of building blocks are in the special
structures at the start and at the end of each building block.

We take a look at an example (dlog (n′ +m′)e = 3):

identifier 3
⇒ (binary representation) 0 1 1
⇒ (0→ 01, 1→ 10) 011010
⇒ (palindromic) 011010010110
⇒ (add special structure) 0111001101001011001110
⇒ (transform to polyomino)

Note: In the examples, the special structures are always gray for illustration purposes.

6

We define the so-called wildcard polyomino as the polyomino corresponding to the concatenation of
01110, the bitstring with 4dlog (n′ +m′)e zeros and 01110. It thus has the same length as all other
building blocks and is different from all other building blocks. Note that the special structure only
occurs at the start and at the end. For the same size as in the last example, the wildcard polyomino
looks the following way:

By construction, no polyomino corresponding to a clause/variable fits into a polyomino correspond-
ing to another clause/variable. The wildcard polyomino fits into all polyominoes corresponding to a
clause/variable. Only the wildcard polyomino fits into the wildcard polyomino.

We now generate the three polyomino-types described at the beginning. This corresponds to line 4
and 5 in the algorithm.

To give an visualization we will simultaneously look at the following example:

Φ′i ≡ (x1 ∨ x2) ∧ (¬x1 ∨ x2) ∧ (¬x1 ∨ ¬x2)

We label the variables/clauses in the following way:
x1 → 1, x2 → 2, (x1 ∨ x2)→ 3, (¬x1 ∨ x2)→ 4, (¬x1 ∨ ¬x2)→ 5.

Let X1, X2, C3, C4, C5 denote the corresponding building blocks (polyominoes).
Let WP denote the wildcard polyomino.

• clause-checking polyominoes: For each clause, we take the building block of that clause. We
already know that this building block only fits into itself.
Therefore in our example, our clause-checking polyominoes are C3, C4 and C5.

• formula-encoding polyominoes: For each variable xj we construct the formula-encoding
polyomino by concatenation of 7 polyominoes: We start with the building block corresponding
to xj . Next, for each time (at most two) xj occurs positively in a clause, we take a building block
corresponding to that clause. If xj occurs only once in positive form, then we take (for padding)
a copy of the wildcard polyomino, because we don’t want that a clause-checking polyomino
is placed there. Then, we take another copy of the building block for xj . Next, we take the
polyominoes corresponding to clauses in which xj occurs negative. Again, we add the wildcard
polyomino if xj only occurs negated once. Finally, we take another copy of the building block
corresponding to xj .
Therefore in our example, our formula-encoding polyominoes are X1 C3 WP X1 C4 C5 X1 and
X2 C3 C4 X2 C5 WP X2.

• variable-setting polyomino: We want that the variable-setting polyomino for xj can only be
placed into exactly two positions in the formula-encoding polyomino of xj and either blocks all
the building blocks in the formula-encoding polyomino of xj of clauses where xj occurs positive
or all where xj occurs negated. For each variable xj the variable-setting polyomino is formed by
concatenating in the following order: The polyomino for the variable, 2 copies of the wildcard
polyomino and another copy of the polyomino for xj .
In our example, our variable-setting polyominoes are X1 WP WP X1 and X2 WP WP X2.
Note that X1 WP WP X1 only fits into the following two positions in the formula-encoding
polyomino of x1:

ptarget: X1 C3 WP X1 C4 C5 X1

placement: X1 WP WP X1

(this corresponds to setting x1 = false and blocks the building blocks of the clauses, where x1
occurs positive) or

ptarget: X1 C3 WP X1 C4 C5 X1

placement: X1 WP WP X1

(this corresponds to setting x1 = true and blocks the building blocks of the clauses, where x1
occurs negative). The same property holds for X2 WP WP X2.

7

As described in algorithm 2, we define the target Polyomino as the concatenation of all formula-
encoding polyominoes and the input set S as the set of all formula-encoding polyominoes and clause-
checking polyominoes.
Therefore in our example, the target polyomino has the following form:

X1 C3 WP X1 C4 C5 X1 X2 C3 C4 X2 C5 WP X2

Our input set S is {X1 WP WP X1, X2 WP WP X2, C3, C4, C5}.

We now construct the following packing:

ptarget: X1 C3 WP X1 C4 C5 X1 X2 C3 C4 X2 C5 WP X2

packing: X1 WP WP X1 C4 C5 C3 X2 WP WP X2

The placement of the variable-setting polyominoes correspond to f(x1) = false and f(x2) = true.

A detailed visualization can be found in the appendix at the end of the report.

4.3 Correctness
We now have to prove the correctness. It is sufficient to prove that (for all i and Φ):

Φ′i is satisfiable ⇐⇒ PolyominoPacking(S, ptarget) = true

(⇒). Assume Φ′i is satisfiable. Then there is a satisfying assignment f that allocates each variable xj
to a boolean value f(xj). If f(xj) = true, we place the variable-setting polyomino for xj aligned to
the right side of the formula-encoding polyomino for xj . Otherwise, we place it aligned to the left side
of the formula-encoding polyomino for xj . This is possible because the wildcard polyomino fits into
every other building block and the building block of xj fits into itself. The variable-setting polyominos
trivially don’t overlap.
Because f is a satisfying assignment, each clause cj must be true. Therefore there is at least one literal
in cj that is true. Let this literal belong to some xk. If it is ¬xk, the building block in the fifth or
sixth position in the formula encoding polyomino for xk has to be (by construction) the building block
corresponding to cj . We place the clause checking polyomino for cj there. This is possible because if
¬xk is true, f(xk) = false and therefore it doesn’t overlap with the placement of the variable-setting
polyomino of xk. If the literal occurs in positive form we place it on the second or third position,
which is possible with the same arguments. The clause-checking polyominoes don’t overlap because
there is exactly one per clause and each of them only fits into itself.

(⇐). Assume there is a polyomino packing. We first observe, that because of the special structure
01110 a placed building block cannot overlap with multiple building blocks of the target polyomino.
We also observe, that the variable setting polyomino for xj only can be placed at two different loca-
tions: Either aligned to the left or the right side of the formula-encoding polyomino for xj . In the
first case, we set the allocation f of xj to false, otherwise to true. We now show that f is a satisfying
assignment, i.e. that each clause cj must be true. We now observe, that the clause-checking polyomino
only fits into itself. Therefore there must be a xk, such that the clause-checking polyomino of cj is
placed into the formula-encoding polyomino of xk. Because it cannot overlap with the variable-setting
polyomino of xk we know that if f(xk) = true xk occurs positive in cj respectively if f(xk) = false
xk occurs negative in cj . Therefore each clause cj is true under f, what implies that Φ′i is satisfiable.

4.4 Runtime
We now take a look at the runtime of our algorithm:

By [3] and [4] we know that for any fixed ε > 0 there is a sparsification algorithm such that l ≤ 2εn
and that Line 1 can be executed in O(nt · 2εn) for some constant t. The papers [3] and [4] also
states (because we can choose ε > 0 arbitrarily small), that if we can solve the 3-SAT problem for
a O(n)-variable 3-CNF formula with O(n) clauses (i.e. for Φi) in subexponential time, we also can
solve 3-SAT in subexponential time (using the sparsification algorithm for a small enough ε and the
for-loop). Therefore we only have to show that the runtime of lines 3 to 8 is subexponential.

8

Lines 3 to 5 can be done in time O(n). The input size k to the polyomino packing algorithm can be
bound by O(n)·(maxsize(buildingblock)). Because the number of clauses and the number of variables
is in O(n), the size of a building block is in O(logn) and therefore k is in O(n logn).

Let g(k) denote the runtime of the polyomino packing algorithm. Then the runtime of lines 3 to 8 is
O(n) + g(n logn).

Let’s assume g is in 2o(k/ log k) for input size k. Then we also know that the runtime of the polyomino
packing algorithm is in 2o(n logn/ log (n logn)) ⊆ 2o(n logn/ logn) ⊆ 2o(n). That means that Line 6 also
has subexponential runtime.

Putting all together we get that the runtime of lines 3 to 8 is O(n) + 2o(n) ⊆ 2o(n). Therefore we
could solve 3-SAT in subexponential time if polyomino packing would be in 2o(k/ log k) for input size
k. If we assume that the exponential time hypothesis holds, this is a contradiction, what implies that
polyomino packing for input size k is in 2Ω(k/ log k) if the ETH holds.

4.5 Lower bounds in restricted cases
In the reduction our input size k for the polyomino packing algorithm is equal to n logn, where n is
the number of variables in Φ. To distinguish the input sizes I will always use k and n in that way.

We observe that the target polyomino in our construction always fits into a 2×O(n logn) = 2×O(k)
(n formula encoding polyominoes with size O(logn)) rectangular polyomino and that each polyomino
in S always fits into a 2×O(n logn) = 2×O(k) rectangular polyomino. That means if the ETH holds
even this subproblem is in 2Ω(k/logk).

We also could modify our algorithm in a way, that the target polyomino is a 3×O(n logn) = 3×O(k)
rectangular, by adding the polyominos corresponding to the negated bitstrings of the formula-encoding
polyomino to the input set S and modifying the special structure slightly. So even this special case is
in 2Ω(k/logk).

The paper also states, that there are subproblems, that can be done in strongly subexponential
time, even if the ETH holds. For example, if the target polyomino is a 2 × O(k) rectangle, we can
find an algorithm with subexponential runtime 2O(k3/4 log k) ⊆ 2o(k). Or if the polyominoes in S
and the target polyomino are all rectangular, we can find an algorithm with subexponential runtime
2O(
√
k log k) ⊆ 2o(k).

5 References
[1] H. L. Bodlaender and T. C. van der Zanden, “On the exact complexity of polyomino packing,”

2018.

[2] H. L. Bodlaender, J. Nederlof, and T. C. van der Zanden, “Subexponential time
algorithms for embedding h-minor free graphs,” pp. 9:1–9:14. [Online]. Available:
https://pure.tue.nl/ws/portalfiles/portal/53480205/subex.pdf

[3] R. P. Russell Impagliazzo and F. Zane, “Which problems have strongly exponential complexity?”
p. 63:512–530, 2001. [Online]. Available: https://cseweb.ucsd.edu/~russell/ipz.pdf

[4] D. Scheder, “Sparsification and eth.” [Online]. Available: http://users-
cs.au.dk/dscheder/SAT2012/sparsification.pdf

9

6 Appendix
Visualization of the example on page 6. The target polyomino is always in the top row and the
packed polyominos are in the bottom row. The target polyomino is one connected structure but for
illustration purposes drawn as multiple segments.

10

