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Introduction

Balls-and-bins games are one of the most studied models in all of computer science. A balls-and-bins game

or balls-into-bins problem involves m balls and n bins. Each time, a single ball is thrown into one of the

bins. After all balls are thrown, we look at the number of balls in each bin[6]. These games are very popular

when it comes to study how to distribute load evenly across the resource being allocated. They are used to

analyse the average and worst-case occupancy of buckets in a hash-table, the worst-case load on nodes in a

distributed cluster, and even the amount of time customers wait in line at the grocery store. But there are

a few load distribution problems which can’t be modelled with the simple balls-and-bins game. Let us look

into one such problem the paper provides. A common data structure used for storing data into databases is

the so called B-Trees defined as follows[2][5]:

Definition 1 (B-Tree). A self balancing multi-way tree data structure, which is common for relatively

large blocks of data. Each leaf has at most B elements, internal nodes (except the root) have degree Θ (B)

elements, and all leaves have equal depth.

A B-Tree is just a generalization of a binary search tree, since a binary search tree is a B-Tree with B = 1.

When we insert an item we propagate down till we find the leave where the element belongs. If the number

of elemnts is greater than B (which violates one rule of B-trees) the tree structure hast to be renwed in

a certain way, which is not important for this talk. We don’t go into detail of the other operations like

deletions either since it is not relevant for this paper. But instead we will define a modified B-Tree called

Buffered B-Tree.[2]

Definition 2 (Buffered B-Tree). A B-Tree with each node maintaining a buffer of insertions and updates

to its subtree. An insertion buffer is a cache of recently inserted key-value pairs. An update buffer on

the other hand is a cache of changes to existing items. Delayed updates in these buffers are only propagated

down to the children’s buffer whenever a node’s buffer overflows.

In Figure 1 we see an example of a Buffered B-Tree, which was somehow obtained. Now let us say the buffer

is empty and we want to add the elements 1, 5, 7 and 13.

The paper inserted batches of row into an empty table running with B-Trees with and without insertion

buffers. After 1 million insertions the buffered version takes 12.3% as long as the unbuffered version. This

shows that Buffers are indeed really helpful. But why do we need to study them if they already are good?

The paper also tested for even bigger numbers. After 50 million insertions the advantage is reduced. The
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Figure 1: An example of a buffered B-Tree with an insertion buffer, where we are just interested in the

insertion buffer of the root.

buffered version takes 68.3% of the time of the unbuffered version.

Because of that our goal has to be to maximize the number of items removed from the buffer in each flush.

We already see that the balls-and-bins game works for one round of filling the buffer of a node, but what do

we do if the node’s buffer becomes full like in Figure 1? For this we will look at a modified game, which we

will refer as the ball recycling game.

Definition 3 (Ball Recycling Game). Throw m balls into n bins i.i.d according to a given probability

distribution p. Then, at each time step, pick a non-empty bin and recycle its balls: take the balls from the

selected bin and re-throw them according to p.

This game models insertion buffers and update buffers. Disk blocks of buffers are bins and elements in the

insertion/update buffer are balls. The probability distribution p is analogous to the observed probability

of items inserted or updated. Evicting all the items in a a disk block is the same as emptying the bin

associated with that disk block. After an eviction of k items, we have room for k new insertions/updates

i.e., we have k new balls to throw. The policy for selecting the target disk block of an eviction corresponds

to the bin-picking method.

We want to find a recycling strategy/bin-picking method, which has a high as possible expected number

of balls recycled, which we will call the recycling rate. The higher the recycling rate of a certain recycling

strategy, the better the speed-up of such an insertion buffer.

In Figure 2 we have an example with n = 7 bins and m = 10 balls, which all are thrown in the moment of

the first picture. Let the distribution p be defined as follows. Let pi = 1
10 if i is odd and else let pi = 1

5 i.e.

the bin has an even number. In the figure we reached a part of the game where all balls are already thrown

i.e., the node’s buffer is full. It picks a non-empty bin (in this case bin 3) and recycles its balls (shown in

red). The re-thrown balls land in bin 1, 3, and 5 (shown in blue). This happens with probability 1
10 each.

This also shows, that it is also possible to throw the balls into bin 3 again.

We will look at three different and very natural recycling strategies given Figure 2.

• Fullest Bin A greedy strategy that recycles the bin with the most balls. In Figure 2 we would exactly

pick bin 3, because it has at least one more ball than all other bins.

• Random Ball: A strategy that picks a ball uniformly at random and recycles its bin. In this strategy

it is important to notice that we don’t directly pick a bin. So the scenario of Figure 2 occurs with a

probability of 3
m = 3

10 .

• Golden Gate: A strategy that picks the bins in round-robin fashion; after a bin is picked, the next

bin is its non-empty successor. We can also state a important property of this strategy with Figure 2.

Assuming, we recycled bin 2 in the last time step. We will have to recycle bin 3 in the current time

step, but in the next time step, we will have to recycle bin 5, since bin 4 has no balls in it.
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Before Recycling:

bin 1 bin 2 bin 3 bin 4 bin 5 bin 6 bin 7

After Recycling:

Figure 2: An example of a ball recycling game with n = 7 bins and m = 10 balls

You might think that the Fullest Bin is always optimal for the general distribution. But there are distri-

butions for which Fullest Bin is pessimal. This means that it recycles at most 2 balls per round whereas

the optimal recycling strategy recycles almost m balls per round. Let us look into such an example.

Example 1. The skyscraper distribution is defined as follows: p0 = 1 − 1
n + 1

n2 and pi = 1
n2 , for

0 < i ≤ n − 1. Suppose that m < n Now with Fullest Bin we will almost every time step pick bin 0. The

number of the balls in the other bins will in expectation always be incremented in every nth step. We will

choose bin 0 until it has 1 ball in it, at which point it will pick another bin, which will almost certainly have

1 ball in it. After this point, we will always either almost certainly recycle 2 (bin 0) or 1 (the rest of the

bins) ball. Our recycle rate will slowly drop below 2. You see that pretty well in Figure 3 When we instead

recycle the least-full non empty bin we will avoid that balls stay to long in a bin with low probability and have

a recycling rate of nearly m.

We will see that the strategies Fullest Bin and Golden Gate are optimal for the uniform distribution,

which we denote as u and Random Ball is optimal for the general distribution, which we will denote as p.

Short Introduction to Markov Chains[3][4]

You all are familiar with the so called finite automata. Systems are often modelled by automata, and discrete

events are transitions from one state to another. If you want to analyse such discrete event systems, you

assume that the events are stochastic, and you want to know how your system behaves on average. If the

events happen in discrete time (for example, there is an event every hour), the tool to model the system

is called Discrete Time Markov Chains. This is not quite what we need, since our recycling events are not

based on some time interval. So we define following
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In the beginning:

bin 0

bin 1 bin 2 bin 3 bin 4 bin 5 bin 6 bin 7

After finite rounds:

Figure 3: How the Fullest Bin on the skyscraper distribution would result.

Definition 4 (Continuous Time Markov Chain, Deterministic). Let S be a finite or countably set of

states. A Continuous Time Markov Chain is a continuous time stochastic process {Xt : t ∈ R≥0} with

Xt ∈ S for all t that satisfies the continuous Markov property.

A Markov chain satisfies the Markov property, deterministic if the probability for the next state depends

only on the current state, and not the history.

We will need Continuous Time Markov Chains for this report/presentation, since in our ball recycling

game events (transitions) happen in arbitrary times, to be exact, whenever the node’s buffer is full. Now

we go on with mapping our ball recycling game onto this newly learned Markov Chains. In a ball recycling

game, we represent the configuration of the balls as a vector X of length n (number of bins), where Xi is

the number of balls in the ith bin. Since the number of balls is finite, there are only a finite number of

bin configurations/states. Intuitively we see that ball recycling games and a recycling strategy are Markov

decision processes. Let λi be some distribution of state i describing the time the process stays in state i and

further let λj,i be the transition rate from state i to j. We now further introduce an important property of

deterministic, stateless Markov Chains for finite-state distributions:

Definition 5 (Stationary Distribution). For t→ inf, π is a stationary distribution if for all i ∈ S,∑
j:j 6=i

πj · λj,i − πi · λi = 0. (1)

The sum on the LHS describes the net flow of a Markov process.

We know further add that the three recycling strategies we learned are finite-state recycling strategies, and

therefore the property of the stationary distribution works for ball recycling games. We will use following

lemma without a proof:
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Lemma 1. There exists a deterministic recycling strategy OPT that achieves the optimal expected average

recycling rate.

We could prove this with the fact, that OPT has an unique stationary distribution i.e., has a net flow of

zero. The proof follows from Kallenberg’s Corollary 5.4[3]. Now we just have to define some notations and

we can start the really interesting part.

Basic Definitions

m The number of balls.

n The number of bins.

p General distribution.

u Uniform distribution.

pi Probability that some thrown ball lands in bin i, where i ≤ n.

RA The recycling rate of some recycling strategy A.

RB Short for the strategy Random Ball

FB Short for the strategy Fullest Bin

GG Short for the strategy Golden Gate

‖p‖ 1
2

=
(∑n

i=1

√
pi
)2

, the half quasi-norm of p

Main upper Bound for all recycling strategies

Let’s get started. First we want to get a main upper bound for some strategy A with unique stationary

distribution. Let p be some general distribution on the bins. We first introduce a lemma, which is very

important for stating proofs for this kind of balls-and-bins game and follows directly from our observations

on Markov Chains. Let φi be the event that the strategy A picks bin i. Let RA
i = E

[
RA|φi

]
be the number

of balls recycled given that the strategy A picks bin i and fi = P (φi), the probability of picking bin i in the

stationary distribution. The so called flow equation is defined as follows:

Lemma 2 (Flow Equation). Let A be a recycling strategy with a unique stationary distribution for a ball

recycling game with n bins with probabilities p. Then, for all 0 ≤ i < n,

piR
A = fiR

A
i .

Proof. We use Defintion 5 for proving this Lemma. We see that for Ball recycling games we have that λi = fi
for i ∈ [n] and following special case on the transition rate: λk,i = λl,i = pi for k, l, i ∈ [n]. This means no

matter which bin was recycled before, the probability of throwing a ball in a certain bin does not change.

Further on from the assumption we take that A is a strategy with a unique stationary distribution. So the

Equation 1 can be rewritten as follows: ∑
j:j 6=i

piR
A
j − fiRA

i = 0.

Rearranging gives us exactly the Flow Equation
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In other words, when RA balls are thrown, piR
A of them are expected to land in bin i. Now this ball can

only leave bin i if bin i is picked by A, at which point all balls in bin i will be evicted. Because A has an

unique stationary distribution, the net flow must be zero.

The following Lemma 3 has a longer rather mathematical prove, which needs the introduction of three

other lemmas before you can prove it. For this reason, we won’t prove the lemma. Instead an intuition is

given to the lemma, which is probably a more helpful variant to understand it.

If we assume we have a reasonable recycling strategy (not all strategies satisfy this following assumption).

Then if the number of balls Xi in bin i grows, the recycling rate of the other bins will go down, because the

Xi balls aren’t available for recycling, until bin i is selected. This means that most of the time we have a

rather high number of balls Xi in bin i, because the less balls are available to throw into this bin i. If we

assume this intuition as fact for the moment, this suggests that the expected number of balls E [Xi] in bin

i should be greater than half the recycling rate of bin i, perhaps excluding the last ball to land in the bin.

Meaning

E [Xi] ≥
1

2

(
RA

i − 1
)

=
1

2

(
pi
fi
RA − 1

)
,

where in the equality the Flow Equation (Lemma 2) is used. Now we sum this over i and use that the sum

over all expected number is equal to the number of balls in the game m.

n∑
i=1

E [Xi] ≥
n∑

i=1

1

2

(
pi
fi
RA − 1

)

m ≥ 1

2

(
RA

n∑
i=1

(
pi
fi

)
− n

)
After rearranging we obtain following Lemma:

Lemma 3. Consider a ball-recycling game with m balls, n bins and distribution p. If A is a strategy with a

unique stationary distribution that picks bin i with frequency fi, then its recycle rate is bounded by

RA ≤ 2m+ n− 1∑n
i=0

pi

fi

.

Lemma 3 applies to the optimal deterministic strategy OPT promised by Lemma 1, and we know that

RA ≤ ROPT for any recycling strategy A. Thus by maximizing the RHS of Lemma 3, we can get an upper

bound on the recycling rate of any recycling strategy.

Lemma 4. Consider a ball-recycling game with m balls, n bins and distribution p. For any recycling strategy

A,

RA ≤ 2m+ n− 1

‖p‖ 1
2

.

Proof. We want to prove that:

2m+ n− 1∑n
i=0

pi

fi

≤ 2m+ n− 1

‖p‖ 1
2

. (2)

We must have that √√√√ n∑
i=0

pi
fi
≤

√√√√ n∑
i=0

pi

≤
n∑

i=0

√
pi,
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where the first inequality comes from the fact that 0 < fi ≤ 1 for all i ∈ [1, n] and the second inequality is a

special case of the Chauchy-Schwartz Inequality. When we square both sides we get

n∑
i=0

pi
fi
≤

(
n∑

i=0

√
pi

)2

= ‖p‖ 1
2
,

which directly implies Equation 2.

The Uniform Case

Before continuing with the General Case, we will look into the special case when the bins are uniformly

distributed, which models insertion buffers the best. The reason is that we mostly insert items with uniformly-

distributed keys. Then I give a short proof on why Fullest Bin and Golden Gate are optimal. We get

following Corollary from Lemma 4

Corollary 1. Consider a ball-recycling game with m balls, n bins and uniform distribution u. For any

strategy A

RA ≤ 2m+ n− 1

n
= 2

m

n
+ 1.

Theorem 1. Fullest Bin and Golden Gate are optimal for the ball recycling game with distribution u for

any n bins and m balls to within an additive constant. They each achieve a recycling rate of at least 2m
n+1 .

Meaning

RFB ≥ 2m

n+ 1

i.e. RGG ≥ 2m

n+ 1
,

(3)

whereas no recycling strategy can achieve a recycling rate greater than 2m
n + 1

Proof. Let S be the random variable denoting the number of balls thrown in a given round with Golden

Gate. Golden Gate will recycle the bins in order to start from the next one and cycling around. Therefore

a ball lands in the [(n− 1) /2]th bin, due to uniformity. Each ball thrown will therefore sit for an average of

less than (n− 1) /2 round before it is thrown again.

Let T be the random variable denoting the number of balls thrown in a given round with Fullest Bin. We

can order the bins in order of fullness. Therefore the ball lands in the [(n− 1) /2]th bin as above, due to

uniformity. Now, we reorder the bins back into fullness order. During the reordering more balls are moved

up the ordered list than down, thus each ball thrown int the system will sit for an average of less than

(n− 1) /2 rounds before it is thrown again.

E [S] (n− 1)

2
≥ m− E [S]

E [S] (n− 1) ≥ 2 (m− E [S])

E [S] (n+ 1) ≥ 2m

E [S] ≥ 2m

n+ 1
.

analogous for T . And we are done!

Further on the paper proves why Random Ball in the Uniform Case recycles at most 1 + (2− ε) m
n balls

per round for some ε > 0 and at least
(
1 + 1

64 − c
)

m
n . We don’t have the time to look into this, but we will

show the results from a database experiment presented by the paper.
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Example on the Uniform Case

We want to look at an example where we clearly see why we prefer Fullest Bin and Golden Gate over

Random Ball in the uniform case. Since the difference is very small on small m. We will look at Database

Experiments made by the paper with really high numbers.

Figure 4: Simulated results with various key distributions and recycling strategies. (Higher is better)[1]

In Figure 4 we see that Random Ball is always a little bit slower (has a smaller recycling rate) for big

numbers.

The General Case

Unlike insertions updates do not change the structure of the B-Tree. Thus, if we buffer updates, then we

can have non-uniform leaf/bin-weights. Update buffers do therefore match the general case. Also we can

not just assume that we will always have uniformly distributed keys. So this is also worth looking at for

insertion buffers.

In this section, we want to look at why Random Ball is Θ (1)-optimal for the general distribution p. As

before let RA be the recycle rate of some strategy A. Further on we the half-quasi norm defined as follows:

‖p‖ 1
2

=
(∑n

i=1

√
pi
)2

. We have that

Theorem 2. Random Ball is optimal for the ball recycling game with distribution p. Formally for strategy

RB

1. If m ≥ n,

RRB = Θ

(
m

‖p‖ 1
2

)
. (4)

2. If m < n, let L be the m lowest-weight bins, q =
∑

l∈L pl, and RRB
L be the recycle rate of Random
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Ball restricted to L. Then,

RRB = Θ

(
min

(
RRB

L ,
1

q

))
. (5)

We won’t look at the whole proof due to time reasons.

We already looked at why that no recycling strategy has a recycling rate exceeding 2m+n−1
‖p‖ 1

2

(main upper

bound). We will bind Random Ball additionally from below so that it matches that bound for m ≥ n

leading to Equation 4. The paper additionally introduces a new recycling strategy Aggressive Empty,

which is optimal for m < n. At the end they compare Random Ball to Aggressive Empty, which then

implies that Random Ball is also optimal for m < n (Equation 5), concluding the whole theorem.

Proof of Theorem 2 for m ≥ n

Proof. Case m ≥ n
Let XRB

i be the random variable of the number of balls in bin i in the stationary distribution of Random

Ball. Random Ball recycles bin i with probability
XRB

i

m , and therefore the expected number of balls

recycled from bin i per round is
XRB

i

m · E
[
XRB

i

]
=

E
[
(XRB

i )
2
]

m . The number of balls that land in bin i per

round is pi
∑n

j=1

E
[
(XRB

j )
2
]

m . Since X is distributed stationarily, we must have

pi

n∑
j=1

E
[(
XRB

j

)2]
m

=
E
[(
XRB

i

)2]
m

≥
E
[
XRB

i

]2
m

using Jensen’s Inequality. Clearing denominators, taking square roots and summing across i, we have

n∑
i=1

√√√√pi

n∑
j=1

E
[(
XRB

j

)2] ≥ n∑
i=1

E
[
XRB

i

]
√√√√ n∑

j=1

E
[(
XRB

j

)2] n∑
i=1

√
pi ≥ m

wher we used that
∑n

i=1 E
[
XRB

i

]
= m. We will square both sides again and obtain the expected recycle

rate:

n∑
j=1

E
[(
XRB

j

)2]( n∑
i=1

√
pi

)2

≥ m2

n∑
j=1

E
[(
XRB

j

)2]
m

≥ m(∑n
i=1

√
pi
)2

RRB ≥ m

‖p‖ 1
2

which proves the Equation 4.

Conclusion

We’ve come to the end and seen how modifying the classic balls-and-bins game can model a totally new

problem in Computer Science. Insertion Buffers and Update Buffers in B-Trees. We got an intuition
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on how using different recycle strategies can result in different recycle rates. Random Ball is Θ (1)-

optimal, whereas Fullest Bin can be pessimal. However, when p = u, in the uniform distribution, Fullest

Bin and Golden Gate are optimal within an additive constant.

I invested a lot of time in the introduction and the upper bound. The paper proved a lot more stuff. They

give a proof to Lemma 3, the 2nd case of Theorem 2 and they prove why Random Ball is not optimal on

the uniform case. They also give a ton of results on Database Experiments, which are really interesting to

look at, but was unfortunately hard to present on a blackboard.
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