
Simpler, faster and shorter labels for distances in

graphs [1]

Jules Bachmann

October 2018

1 Introduction

Distance oracle for graphs. For an undirected and unweighted graph G =
(V,E), we want to build a data structure, which for any query q = {u, v} effi-
ciently computes and returns the shortest distance distG(u, v) between the two
nodes u and v. We want this data structure to be as small as possible, while
also having a short query time. In the following, we instinctively show a lower
bound for the size of such a data structure.
We know that any graph with n nodes can have up to n(n−1)

2 ≤ n2

2 edges, and

hence there are 2
n2

2 different graphs with n nodes. Since all of these graphs are
different, for any two of these graphs, call them G and H, there is an edge {u, v}
present in only one of them. Without loss of generality, we assume {u, v} ∈ G
and obtain the following: distG(u, v) = 1 6= distH(u, v). The encoding of G
and H in the said data structure must therefore be different which results in us
needing 2

n2

2 different bitstrings. Each bitstring must hence have size at least

log(2
n2

2) = n2

2 which is the lower bound for the size of a distance oracle for
general graphs.

Labels for distances in graphs. Instead of having one centralized oracle,
we can assign to each vertex v a label l such that for two vertices u and v, we
can find the distance distG(u, v) by looking at their labels and their labels only.
We call this a distance labeling scheme.
Since the rules stated before still hold, we have a lower bound for the label size
of n

2 . For more specific graphs we can achieve better lower bounds. However,
the known algorithms for this problem are significantly above the proven lower
bound, with the exception of trees. The following table presents the existing
best results without second order terms for different graphs:

1

Graph Lower bound Upper bound

General graphs[1] O(n2) log 3
2 n+ o(n)

Sparse graphs O(
√
n)[7] o(n) [6]

Planar graphs Ω(n
1
3) [7] O(

√
n)[4]

Trees[5] 1
4 log2 n−O(log n) 1

4 log2 n+ o(log2 n)

Note that the upper bounds given for general graphs is obtained through the
method which will be presented here and is a huge improvement to the previ-
ous upper bound which was (log 3)n for a decoding time of O(n/ log n). The
labeling scheme presented here will, in addition to its space, need a decoding
time of O(1). In this presentation, we do look only at unweighted graphs, but
the method presented can be easily adapted to weighted graphs.

Encoding. Since we want to minimize the space used for storing the labels, we
will use following encoding method:

Lemma 1. A table with n elements from an alphabet σ can be represented in a
data structure of dn log |σ|e bits.

The proof for this lemma is trivial.

Lemma 2. A table with n integral entries in [-k,k] can be represented in a data
structure of O(n log k) bits to support prefix sums in constant time.

To prove this lemma, please refer to [3]

Naive algorithm. A very direct approach for a connected, undirected
graph G = (V,E) would be for every node v ∈ V to store the shortest distance
to the n− 1 other nodes in G. Let’s now numerate these n nodes from 1 to n,
such as V =

⋃n
i=1 vi. Instead of storing the distances to all other nodes in the

label of each node, for a node vi we can store only the distances to the bn/2c
nodes vk where k ∈ [i + 1, i + bn/2c] (mod n). For 2 arbitrary node i and j,
we can assume i < j without loss of generality, the label of node i will contain
the distance to j if j ≤ i + bn/2c, whereas the label of node j will contain the
distance to i if j > i+ bn/2c.
Since every node v ∈ V has a label containing the distances to bn/2c nodes, and
assuming the largest shortest distance between 2 nodes is distG(x, y), x, y ∈ V
we can encode all the labels in spaceO(n·n2 ·log(distG(x, y))) = O(n2 log(distG(x, y)))
using Lemma 1.

2 Labeling schemes

In order to facilitate the understanding of the methods presented here, the fol-
lowing graph G′ = (V ′, E′) will be used as an example during this presentation:

2

Simple algorithm. Let’s first define for nodes x, u, v ∈ V :

δx(u, v) = distG(x, v)− distG(x, u)

Using the triangle inequality we observe that

−distG(u, v) ≤ δx(u, v) ≤ distG(u, v)

In particular, δx(u, v) ∈ [−1, 1] whenever u, v are adjacent.
Given a path v0, ..., vt of nodes in G, we have : δx(v0, v1)+δx(v1, v2)+δx(v2, v3)+
... + δx(vt−1, vt) = distG(x, v1) − distG(x, v0) + distG(x, v2) − distG(x, v1) +
distG(x, v3) − distG(x, v2) + ... + distG(x, vt) − distG(x, vt−1) = distG(x, vt) −
distG(x, v0) which shows that the δx - values have a telescoping property. There-
fore:

δx(v0, vt) =
t∑
i=1

δx(vi−1, vi)

Out of this, we can compute distG(x, vt) by adding distG(x, v0) to the sum
computed above:

distG(x, vt) = distG(x, v0) +
t∑
i=1

δx(vi−1, vi)

Let’s now consider the shortest closed walk when not taking weights into ac-
count, the Hamilton walk v0, ..., vh−1 of length h of our graph G, with n ≤ h ≤
2n − 2. Given nodes x, y ∈ V , we find i, j such that x = vi, y = vj , assuming
i ≤ j without loss of generality. We can then compute distG(x, y), using the
same trick as in the naive algorithm, as the sum of at most bh/2cδx values:

3

for j ≤ i+ h/2 : distG(x, y) = distG(vi, vj) =
j−1∑
k=i

δx(vk, vk+1)

for j > i+ h/2 : distG(x, y) = distG(vj , vi) =
i−1∑
k=j

δx(vk, vk+1), with the indices

being counted modulo h here.

For our example graph G′ we have following Hamiltonian walk:

Where A = v0 and F = v5. We take A as our x and E as our y, which correspond
to v0 and v4 respectively. The distance between A and D is also computed by the
following: distG′(A,D) = distG′(v0, v3) = δA(v0, v1) + δA(v1, v2) + δA(v2, v3) =
(1− 0) + (2− 1) + (2− 2) = 2.

With this we can construct a first distance labelling scheme where the label
l(x) of each node x, consists of the following:
- A number i ∈ [0, n− 1] such that x = vi
- The bh/2c values δx(vk, vk+1) for k = i, ..., i+ bh/2c (mod h)
As seen above, l(x) is sufficient to compute distG(x, y) for an arbitrary y.
For node E in our example graph G′, we would obtain the following l(E):
4, δE(E,F), δE(F,A), δE(A,B)
In order to reduce the size of the labels, we encode l(x) as d 12h log 3e + dlog he
using Lemma 1. If G is Hamiltonian, i.e h = n as is our example G′, this gives
a labelling scheme of size d 12n log 3e+ dlog ne, while in the general case we have
d(n− 1) log 3e+ dlog ne since h ≤ 2n− 2.

Heavy-light decomposition of trees.[2] Let’s look at something a bit differ-
ent. Let T be a tree rooted at r. We classify the nodes v ∈ T as either heavy

4

of light using the following method:
For every non-leaf node v we look at its children, select one with the biggest
subtree and classify that children as heavy. All other children are light; the root
r is also light.
We call apex of v the nearest light ancestor of a node v. By removing the edges
between light nodes and their parents we divide T into a collection of heavy
paths. We now enumerate the nodes in t in a depth-first manner with heavy
children being visited first and denote the number of a node by dfs(v). This will
result in nodes on a heavy path always having numbers in consecutive order,
with the root r having the number 0. Now, each node v is assigned a label lt(v)
consisting of the sequence of dfs-values of its first and last ancestor on each
heavy path, starting with r and down to the root. The first and last ancestor
for a given path can be the same if only one node of that given path is used to
attain v.

The graph above will serve as an example, with heavy nodes colored in red,
where the label of the node with dfs number 12 will be

0, 0, 9, 10, 12, 12

In the general case, the label lT (v) of a node v will look like this:

l1, ..., h1, l2, ..., h2, ..., lt, ..., ht

5

Where l1 = dfs(r) = 0 and ht = dfs(v) and li and hi are the first and last
ancestor of the i-th heavy path on the path from r to v. In addition to the label
lT (v), we also store the label l′T (v) which consists of the distances distG(li, v)
and distG(hi, v).
We know that the number of heavy paths between the root and any leaf is at
most log n, since if the leaf is placed deeper than log n, we would have heavy
paths spanning multiple nodes on the path r to the said leaf and still end up
with log n or less heavy paths to traverse. Therefore, lT (v) is a sequence of
at most 2 log n numbers from [0, n). We can therefore encode this sequence in
O(log2 n) bits. l′T (v) is a sequence of at most 2 log n numbers smaller than n,
which allows us to encode l′T (v) in O(log n · log(n)) bits. Both labels together
can therefore be encoded in O(log2 n) bits.

Main algorithm. We now consider a connected graph G again, and build
a shortest path tree T rooted at an arbitrary node r for it. Using the enumer-
ation of nodes presented in the heavy-light decomposition of trees, we can now
construct a distance labeling scheme similar to the one built for the simple al-
gorithm, but by using the dfs-enumeration of nodes instead of the Hamiltonian
path, and instead of saving the multiple δx(vk, vk+1) for a node x as above, we
save δx(parent(v), v) for all nodes v with dfs(x) < dfs(v) ≤ dfs(x)+bn/2c(mod
n). These δx values can be encoded in d 12n log 3e bits due to Lemma 1. For each
node x ∈ V we therefore assign a label l(x) consisting of the n/2 δx just given
and the labels lT (x) and l′T (x) presented before.
It now remains to show that for two nodes x 6= y, l(x) and l(y) are enough to
determine the shortest distance between x and y. We assume without loss of
generality, that l(x) contains δx(parent(y), y). We define z to be the nearest
common ancestor of x and y, which means it has to be the last node of a heavy
path used to reach either x or y. It follows of this, that dfs(z) has to be present
in either lT (x) or lT (y). Additionally, all nodes v ∈ T(z,y] do have dfs-values
such that δx(parent(v), v) is contained in l(x).
T being a shortest path tree, distG(x, z) = distT (x, z). Since z appears in either
lT (x) or lT (y), we can obtain either distT (x, z) directly from l′T (x) or compute it
as distT (x, z) = distT (x, r)−distT (y, r)+distT (y, z). This allows us to compute

distG(x, y) = distG(x, z) +
∑

v∈T (z,y]

δx(parent(v), v).

Since l(x) contains all the needed δx and the combination of lT (x) and lT (y)
allows us to determine which values we need, as explained above.
Hence we have proved the following theorem:

Theorem 1. There exists a distance labeling scheme for graphs with label size
1
2n log(2W + 1) +O(log n·log(n)).

6

3 Query time

In order to achieve the best possible query time, we will have to rework our
labels one more. First, let’s take a look at the following:

Lemma 3. Let k be a positive integer. Every m-edge tree has an edge partition
into at most dm/ke trees of at most 2k edges

For proof of this lemma please refer to [1].

Let T be any rooted spanning tree of G. We create an edge-partition τ =
{T1, T2, ...} of T into rooted subtrees, called micro− trees, of at most β edges
using lemma 3, with β unknown for now. We define T ∗ = T\r. As the par-
ent relationship in the micro − trees coincides with the one of T , we have
parentTi

(u) = parentT (u) for all u ∈ T ∗i . For a node u ∈ T ∗, we denote by i(u)
the index i such that u ∈ T ∗i and MicroRoot(u) = root(Ti(u). For r = root(T),
let MicroRoot(r) = r.
We define the macrotree M to have node set {Microroot(u)|u ∈ G} and an edge
between MicroRoot(u) and MicroRoot(MicroRoot(u)) for all u 6= r. The fol-
lowing example shows the partition of a tree into microtrees and the resulting
macrotree:

In our revisited labeling scheme, the distance x to y will be computed as
follows:

distG(x, y) = distG(x, r) + δx(r,MicroRoot(y)) + δx(MicroRoot(y), y).

Where distG(x, r) is saved as part of x’s label while δx(r,MicroRoot(y)) is com-
puted as a sum of δx values for nodes in the macro tree and is hence referred

7

as the macrosum. As for δx(MicroRoot(y), y), it is a sum of δx values or nodes
inside y micro tree and is therefore called the microsum.

Macro sum. We have a macro tree M with O(n/β) nodes. We take a Hamil-
tonian walk v0, ..., vh−1 of length h = O(n/β) with v0 = r. For given nodes
x, y ∈ G, we chose t such as vt = MicroRoot(y) and consider the subpath
v0, ..., vt of the Hamiltonian walk. It is easy to see that

δx(r,MicroRoot(y)) = δx(v0, vt) =
t−1∑
i=0

δx(vi, vi+1)

We store these δx in a data structure PreFixx which is stored in x’s label,
whereas t is stored inside y’s label. Since each edge in M connects two nodes
in the same micro tree, and the distance inside a micro tree is at most βW ,
we have δx(vi, vi+1) ∈ [−β, β] for all i. Using this and lemma 2, we can store
PreFixx in O((n/β) log(2β+1)) = O(n log(β)/β) bits such that prefix sums can
be computed in constant time. t(y) in y’s label is stored using O(log(n/β) bits.

Micro sum. We now want to store the relevant information needed to
compute δx(MicroRoot(y), y) such that we can decode it in the smallest possible
time. We define the shortcut δx(v) = δx(parentT (v), v). For each i, we order
the nodes in T ∗i in any order. We now define δx(T ∗i) = (δx(v1), ..., δx(v|T∗

i
|)),

with v1, ..., v|T∗
i
| being the ordered sequence of the nodes of T ∗i . We will store in

each x’s label the δx(T ∗i) of half the total set of δx values, while y’s label stores
the information for which j’s the node vj lies between MicroRoot(y) and y.
To store the sequence δx(T ∗i) that consists of |T ∗i | values from [−1, 1] we use
an injective function, as described in lemma 1, that maps every sequence of t
integers from [−1, 1] into a bit string of length dt log 3e. In this case, we obtain an
encoding of the sequence δx(T ∗i) to a bit string of length d|T ∗i | log 3e ≤ dβ log 3e,
as |T ∗i | ≤ β. We denote this encoding by code(δx(T ∗i)).
In order to decode the encoded version of δx(T ∗i) in constant time, we construct
a tabulated inverse function code−1.
To store the information about the j’s mentioned before in y’s label, we save
the bit string mask(y) such that mask(y) & δx(T ∗i (y)) gives back a sequence S
similar to δx(T ∗i (y)) but with the value of the entries not corresponding to a
node vj being set to 0. The sum of this sequence of integers is the micro sum
δx(MicroRoot(y), y).
We create a tabulated function SumIntegers that sums up the integers of the
sequences S, which consist of up to β values in [−1, 1], while the output is a
number in [−β, β].
As long as both input and output can be represented in O(log n) bits, a lookup
in a tabulated function can be done in constant time on the RAM. We therefore
set

β ≤ c logn
dlog 3e

with c being a constant, which does result in the input and output of the tab-
ulated function to be in O(log n). We will not go into details of space usage of

8

these tables, just note that as long as c < 1, the space used is smaller than the
one used by the prefix table, and therefore the code−1 and SumIntegers tables
can be integrated into the labels without increasing the space asymptotically.

Recall the enumeration of the micro trees done before. Now letD(x) = code(δx(T ∗1))
... code(δx(T ∗|τ |)) denote the binary string composed of all the code(δx(T ∗i)) in

the order i = 1, 2, ..., |τ | and let L = |D(x)|. Note that the length of code(δx(T ∗i)
is the same for all x ∈ G. We therefore denote pi ∈ [0, L) the position in the
string D(x) where the substring code(δx(T ∗i)) starts.
As before, we will save only half of the δx values for a given node x, but we
always have to save all the δx values of a micro tree. This means that for a node
x we will save a table H(x) starting with code(δx(T ∗i(x))) and continuing with

the codes of the following micro trees, until it contains at least n/2δx values.
We furthermore denote a(x) and a′(x) as the starting and ending positions of
the substring containing the code for T ∗i(x) in D(x) and b(x) the first bit after

the last code contained in H(x).
Hence, a(x), a′(x), b(x) and L are saved in x’s label using O(log n) bits, while
H(x) need 1

2n log 3 + O(fracnlog n log 3) bits. The proof for this won’t be de-
tailed here, but can be found in [1]. In one query, we will need to extract at
most dβ log 3e = O(log n) consecutive bits from H(x) in one query, which can
be done in consecutive time on the word-RAM.

4 Summary

For the final version of this labeling scheme, the label of a node x is composed
of the following:
- a(x), a′(x), mask(x), t(x), distG(x, r), L and b(x): O(log n).
- The table H(x) : 1

2n log 3 +O(n
logn log 3).

- The prefix table PreFixx and the tables code−1 and SumIntegers: O(n
logn ((log 3)2+

log log n log 3)).

As for decoding, we can use the following algorithm to find the distance be-
tween two nodes x and y in constant time:

Decode(l(x,G), l(y,G))
if (a(x) ≤ a(y) < b(x)) ∨ (b(x) < a(x) ≤ a(y)) ∨ (a(y) < b(x) < a(x)) then
s = (a(y)− a(x))(modL) and e = (a′(y)− a(x))(modL)

else
return Decode(l(y,G), l(x,G))

end if
MacroSum = PreFixx(t(y))
S = code−1(Hx[s, ..., e])& mask(y)
MicroSum = SumIntegers(S)
return distG(x, r)+ MicroSum + MacroSum

9

With our labeling scheme we have proven the following:

Theorem 2. There exists a distance labeling scheme for graphs with edge
weights in [1,W] using labels of length 1

2n log(2W+1)+O(fracnlog n log 3)(log log n))
bits and constant decoding time.

References

[1] Stephen Alstrup, Cyril Gavoille, Esben Bistrup Halvorsen, Holger Petersen
Simpler, faster and shorter labels for distances in graphs in SODA ’16 Pro-
ceedings of the twenty-seventh annual ACM-SIAM symposium on Discrete
algorithms, pages 338-350
2016

[2] D.D Sleator and R.E Tarjan. A data structure for dynamic trees. J. of Com-
puter and System Sciences, 26(3):362 - 391
1983

[3] V. Mäkinen and G. Navarro Rank and select revisited and extended Theor.
Comput. Sci., 387(3):332-347 November 2007.

[4] P. Gawrychowski and P.Uznański A note on distance labeling in planar
graphs arXiv:1611.06529 November 2016

[5] O. Freedman, P. Gawrychowski, P. K. Nicholson, O. Weimann Optimal dis-
tance labeling schemes for trees CoRR abs/1608.00212.

[6] S. Alstrup, S. Dahlgaard, M. B. T. Knudsen, E. Porat Sublinear distance
labeling in: 24th ESA, 2016, pp. 5:1–5:15.

[7] C. Gavoille, D. Peleg, S. Pérennes, R. Raz Distance labeling in graphs J.
Algorithms 53 (1) (2004) 85–112.

10

