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1 Introduction

One of the most common queries in a graph setting is a shortest path query.
The key concept in this paper, the skeleton dimension, helps answer these
queries by giving information about the structure of a graph. It is related to
the notion of hub sets. These are sets which contain so-called transit nodes
which appear on shortest paths between many node pairs. As the authors of
[1] mention, the concept of transit nodes started as an empirical observation
more than a concrete discovery. It makes intuitive sense that some nodes in
a real world graph route more traffic than others (e.g. train stops that aren’t
popular destinations themselves, but many routes to other destinations go
through them). Out of this fairly simple observation emerged a new family
of algorithms called transit node routing algorithms(TNR~algorithms). The
core idea of these algorithms is to pre-process the input graph in a way that
would allow for efficient queries later on. This is done by giving each node
a distance label, and then answering shortest path queries by reading these
labels.

In general, the asymptotic lower bounds on the size of distance labels are not
very optimistic. Even for sparse graphs, the lower bound is in 2(y/n), where
n is the number of nodes. For a general graph the lower bound is linear.
Even though in a theoretical setting these bounds don’t look too terrible,
one can imagine that in a practical application even Q(y/n) can already be
too much.

TNR-~algorithms try to reduce the size of distance labels by essentially ” prun-
ing” unnecessary entries from the distance labels by storing only transit
nodes, thereby side-stepping the lower bounds mentioned in the paragraph
above. So, in order to bound the size of distance labels produced by a TNR-
algorithm, one has to bound the size of hub sets.



In an attempt to analyze the efficiency of TNR-algorithms, a parameter
called highway dimension was introduced in [2]. The skeleton dimension is
an improvement on this parameter, as the exact computation of the high-
way dimension, which is based on a problem called ”hitting set problem”, is
known to be NP-hard. In order to better introduce the skeleton dimension,
we first define a couple of key concepts.

Definition 1.1: The tree skeleton T* of T is defined as the subtree of T
(geometric realization of T') with nodes whose reach is at least half its dis-
tance from the root, i.e. {v € V(T)|Reachs(v) > 1d7(u,v)}, where u is the
root of T and Reach is the distance to the furthest node away from v.

We note that the % in the above definition is chosen arbitrarily by the au-
thors of the paper. In general, one could define a skeleton with any parameter
a > 0, as we will see later.

Definition 1.2: Tree width is defined as the maximum number of nodes at
any distance from root u, i.e. Width(T') := max,~o|Cut,(d#(u,v))|, where

Cut,(ds(u,v)) is the set of nodes v € V(T') with ds(u,v) =r.

Definition 1.3: Skeleton dimension k of a graph G is the maximum width
of the skeleton of a shortest path tree, i.e. kK =max,cy)Width(T)), where
T'¥ is the shortest path tree of u, obtained as the union of all shortest paths
from u to every other node in G.

As one can notice, the skeleton dimension gives us a sort of lower bound
on the amount of branches of shortest path trees that we can prune in a
graph (more pruning is essentially reducing the width of the tree skeleton).
Taking the union of all shortest paths, it is natural to assume that transit
nodes will appear on a lot of these paths. One can therefore have a dramatic
decrease in the amount of information to be stored at every node. Consider
the simple example in Figure 1.



Figure 1

We now look at node u. Storing the lengths of all paths {u, v, z}, {u,v,y}, {u,v, z}

is superfluous, as node v appears on all of them. Node v is in this a case
a transit node, and the hub set of node u is S(u) = {v}. It is also worth
noting that the hub sets for all nodes except v in this example are the same.
Thus, if we want to answer a shortest path query for v and x, we look at
S(u) N S(z) = {v} and know that we have to go through v to reach x, and
return the distance from u to x as the distance from u to v plus the distance
of v to x. We can see that merely defining hub sets naturally leads to a
reduction in the amount of information we need to store.

2 Comparing Highway Dimension and Skele-
ton Dimension

We recall that the highway dimension of a graph G is defined as a (relatively)
small integer h, such that for any ball with radius r, the set S of vertices of
G with | S| < h covers all shortest paths greater than r within this ball.

2.1 Geometric Highway Dimension as an Upper Bound
for Skeleton Dimension

In this section we present a claim that shows that in the worst case, the
skeleton dimension and highway dimension of a graph are equal. It is impor-
tant to note that in the proof of the following claim, the authors show the
geometric highway dimension as an upper bound. However, in road networks
the continuous and discrete versions (”continuous” and ”discrete” here refer
to the length function) of the highway dimension are expected to coincide
almost exactly, as noted in [1]. The proof of the lemma is not so important,
but the result is.

Claim 1. If the geometric realization G of a graph G has highway dimension
fz, then G has skeleton dimension k < h.



2.2 Example of a Gap between Skeleton Dimension
and Highway Dimension

In order to illustrate that there can be a significant gap between skeleton and
highway dimension, the authors give an example of a family of graphs with
an exponential gap between the two. This setting is the so-called Manhattan-
type road network. It is a square grid of size 2 x 2° with edge lengths, for
which nodes whose coordinates are multiples of high powers of 2 have slightly
lower transit times.

They also define the length function in a way that guarantees uniqueness
of shortest paths by introducing small length perturbations for vertical and
horizontal edges.

The result of all this is the following propsition.

Proposition 2. For any L > 0, grid G has highway dimension Q(\/n)
and skeleton dimension O(logn), where n = 22 is the number of node in

Gr.

The authors note however that there exist length functions, for which the
skeleton dimension of the grid is as high as ©(y/n). So, as one can see
already, the skeleton dimension of a graph heavily depends on the length
function used to measure distances in the graph. This is perhaps not that
surprising if one recalls Definition 1.1 and Definition 1.3. The nodes that
compose the tree skeleton directly depend on the distance function, which in
turn is defined in terms of the length fucntion. Skeleton dimension is defined
in terms of the tree skeleton, and therefore also depends on the length func-
tion. We will see more examples that illustrate this dependence later on.

We finish off this section with some results from practical experiments. The
authors computed the skeleton dimension of a New York travel-time graph
and it turned out to be k = 73, with average skeleton width of 30. The
highway dimension for the same graph is h > 172.

3 Hub Labeling using Tree Skeletons

In this section we will introduce one of the key results of the paper, namely,
we shall use the skeleton dimension to obtain an asymptotic bound on the
size of hub sets of a graph. We will first present the result and then give an
outline of the proof.



Theorem 1. With probability at least 1 — %, all nodes w € V satisfy the
following bound on hub set size:
S(u)y <231, |Cuty”| + 24Inn + 2 MaXy, ) ;15 161 p) bi 0 Yi-

With the help of the skeleton dimension and the concavity of the logarithm
function we can derive the following useful corollaries from Theorem 1.

Corollary 2. With probability at least 1 — O(%), the hub set size of ev-
ery node is bounded by:
O(klog D max{1,

logn
log D

), where D is the diameter of the graph.

Corollary 3. With probability at least 1 — O(%), the hub set size of ev-
ery node is bounded by:

O(kloglogklog D).
Corollary 3 is obtained by substituting logn = logk - log D into the bound
in Corollary 2.

As was observed in the example with Figure 1. limiting the hub set size
equals to limiting the size of distance labels. With the results above, the
authors show a clear connection between hub set size and skeleton dimen-
sion. Moreover, they imply that constructing hub sets with the help of tree
skeletons with high probability will bypass the pessimistic lower bounds seen
in the introduction of this report, which is a good thing to know for anyone
that would like to use a TNR-algorithm.

We now proceed to give an intuitive overview of the proof for Theorem 1,
as the proof itself is very technical and long. In the overview, we will work
with an integer weighted graph, for which we will emulate the geometric re-
alization of the graph by inserting additional nodes with degree 2 into the
graph and sub-dividing every edge with length ¢(v,w) into 12¢(v,w) small
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fragments of size ; each (constants chosen for ease of analysis). After this

process, we can treat the graph as unweighted.
Proof Overview for Theorem 1.

We first introduce an important definition that will come up throughout
the proof.

Definition 1.4: P,(v,w) denotes the unique path between nodes v and
w in the tree T,. Also, P,(u,v) = P,(v).



3.1 Constructing Hub Sets

We construct the hub sets in a randomized fashion by first introducing the
concept of the central sub-path.

Definition 1.5: A central sub-path P(v) C P,(v) is a sub-path of P,(v)
that contains the middle d“T(v) edges.

The hub set of a node v is defined as S(u) := {n,(v)|v € V,v # u}, where
nu(v) 1= arg minge pr vy p(e) and p(e) is a real value in the interval [0, 1] that
is assigned to every e € E uniformly and independently at random. This is
done to simulate the uniqueness of shortest paths. Intuitively one can view
this as "choosing arbitrary transit nodes” in the central sub-path.

3.2 Bounding Average Hub Set Size

We present the following lemma that will give us a bound on the hub set size.
The term k(u) is directly related to the skeleton dimension per the inequality

~

k(u) < O(klog D).

Lemma 2. The expected hub set size of a node u € V' satisfies the bound:
E[lS(u)]] < 16k(w).

The idea behind the proof for this lemma is as follows. For every node y in a
given tree skeleton, we look at a distinct node z, with d,(z,) = [Zd,(y)] (con-
stant chosen with respect to another lemma from the paper that is omitted).
We now look at the path P,(z,,y), and more specifically at the probability
that one of it’s extreme edges is part of the hub set of the two nodes. This

is given by an indicator random variable and bounded as:
2 2 16

< = .
|PU($ya Y| du(y) — %du(y) du(y)
Summing over all y in the tree skeleton and applying linearity of expecta-

tion results in the claim of the lemma, where k is shorthand for the above-
mentioned sum.

A direct application of Markov’s inequality to the bound of Lemma 2, as well
as the equation k(u) < O(klog D), results in the following corollary.

Corollary 1. The average hub set size satisfies
LY e 1S =0 X oy k(u)) < O(klog D), with probability at least 1/2

w.r.t. choice of random values p.



With this we see that the hub set size can indeed be bounded with the
help of the skeleton dimension.

3.3 Concentration Bound on Hub Set Size

Now that we have a bound on the expected size, we now want to tighten
this bound, i.e. show that the minimum and maximum size don’t lie too far
away from the expectationA(an observant reader may have noticed that the

bound in Corollary 3 is O(k(u)loglogk)). Obtaining a concentration bound
on hub set size is much more tricky. This is achieved in three steps:

(i) Partitioning 7" into Layers
(ii) Bounding the size of X~ (n)
(i) Bounding the size of X*(n)

Combining the bounds above will give us Theorem 1. We first, however de-
fine some random variables.

1S (u)| = ZneE(T;;) X(n),
where X (1) € {0, 1} is an indicator variable for the event ”n € S(u)”. X (n)
and X ~(n) is a decomposition of X (n) into contributions from paths located
towards the root and away from the root respectively (with respect to 7).

Partitioning 7" into Layers
We partition the edges of T} as follows. We divide our tree skeleton into layers
L*) that contain edges located between certain radii. These radii are given as
an increasing sequence starting at 0. We then define L**l1 := L*ll 0 B(T7).
These are essentially edges of the tree skeleton of the tree skeleton of the
original graph. We can use this partition to show the following lemma.

Lemma 3. For all i > 1, edge set L™} admits a partition into paths,
Ll = ﬂéf':lP[i’j], s.t. l; < 2min, ¢, liva) \Cutz(r)\ < 2k, each P s a
descending path, and all internal nodes of all such paths have degree exactly
2in T

We have now constructed a sequence of partitions within partitions and
shown that at the lowest level, we obtain a bound that depends on the skele-
ton dimension. What’s left is to now ”propagate” this bound upwards and
show that the whole thing (|S(u)|), can also be bounded using the skeleton
dimension.
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Figure 2. A visualization of the partitions L*!7.
The edges in L**! are colored blue. The thick vertical lines are the radii.

Bounding the Sum of X' (n)
In order to bound this sum, the authors consider an arbitrary edge n which
doesn’t belong to layers 0 or 1 in the tree partition and use the decomposition
into paths from Lemma 3. From this, it follows that there exists exactly one
path from the partition that 7 is a part of. They then observe that in order
for the claim to hold, two conditions must be satisfied:

(i) Prefiz minimum condition: n = arg min.c pii.jinp, ;-) P(€)-

(ii) p(n) < min p(QP), where Q"] is a descending path in T, that extends
to P,

The proof continues with bounding the sum in the following way. We consider
the set of all edges the satisfy (ii) and then introduce an indicator random
variable for the event that an edge from this set satisfies (i) and then con-
sider the sum of these variables. As a result, the following bound is obtained:

ZneE(T;*) X*(n) < Zigzo |OUtZ(T)| + 6clnn + max(,, Zigimw liIn;.

Bounding the Sum of X~ (n)
This bound is the same as the bound for X (n) with some technical differ-
ences that are omitted here.

Combining the Bounds We now see that by combining the bounds for
XT(n) and X~ (n), we get:

1S(u)| <2321, ]Cutz(r)\ + 12cInn + 2 max,,) > l; In~;.

1Slmaz

By applying Lemma 3, using the bound %,,,, < 161n D and setting ¢ = 2, we
obtain the result of Theorem 1.



4 Computing Skeleton Dimension and Addi-
tional Results

One of the main results in the paper is the ease with which one can compute
the skeleton dimension relative to the NP-hard computation of the highway
dimension. Obtaining a discrete tree skeleton can be done with a scan of the
vertices in reverse topological order. Its width k& can then be computed by a
scan of the vertices of the tree skeleton and storing edges that are incident to
vertices in Cut,(T') in a priority queue. This can be done in O(n loglog k)[3].
The skeleton of a graph can be obtained with an all pairs shortest path com-
putation in O(nm + n?loglogn)[3].

Obtaining a hub set can be done in O(nlogC'log(nlogC)). As a result,
we can compute distance labels in expected time O(nm + n?log C'(logn +
loglog C)). The authors note however that with shared randomness, the dis-
tance labels can be computed independently(e.g. in parallel), we can obtain
the labels in O(mnlog C(logn + loglog C)).

Some interesting results include that using different length fucntions in the
same graph can lead to different results. In the New York graph mentioned
in Section 2, measuring distance between nodes as travel time, geographical
distance and hop count yielded different skeleton dimensions (73, 66 and 56
respectively).

Another result is that one can choose an arbitrary cutoff point in Definition
1.3, i.e. instead of %, one can choose an arbitrary a > 0, resulting in a whole
new family of related parameters with o < 8 = kg < k,, whose behavior
can then be studied w.r.t. o and f3.

5 Conclusion

The take-home message here is that despite the very technical proofs pre-
sented in this paper, the final result is very beneficial for practical purposes.
The skeleton dimension is an example of something that started as an em-
pirical observation, and in the end turned into a ”side-stepping” of lower
bounds, something that can help apply distance labeling to larger networks
(e.g. Google Maps, large road networks, etc.). In a sense, it is a bridge
between theory and practice. It shows that theoretical results do not simply
abide in an ivory tower separate from practice. They can actually, if done
right, help solve very practical problems.

On the other hand, the paper also shows that practical concerns can be used
to push theoretical knowledge. If we were satisfied with the decent-looking



bounds on distance label size, research probably never would have gone into
skeleton dimension and related works.
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