
Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Federal Institute of Technology at Zurich

Departement of Computer Science 14. October 2019
Markus Püschel, David Steurer
Johannes Lengler, Gleb Novikov, Chris Wendler

Algorithms & Data Structures Exercise sheet 4 HS 19

Exercise Class (Room & TA):
Submi�ed by:
Peer Feedback by:
Points:

�e solutions for this sheet are submi�ed at the beginning of the exercise class on October 21st.

Exercises that are marked by ∗ are challenge exercises. �ey do not count towards bonus points.

�e following theorem is very useful for running time analysis of divide-and-conquer algorithms.

�eorem 1 (Master theorem). Let T : N → R+ be a non-decreasing function such that for all k ∈ N
and n = 2k,

T (n) ≤ aT (n/2) +O(nb)

for some constants a > 0 and b ≥ 0. �en

• If b > log2 a, T (n) ∈ O(nb).

• If b = log2 a, T (n) ∈ O(nlog2 a · log n).

• If b < log2 a, T (n) ∈ O(nlog2 a).

�is theorem generalizes some results that you have seen in this course. For example, the running
time of Karatsuba algorithm satis�es T (n) ≤ 3T (n/2) + 100n, so a = 3 and b = 1 < log2 3, hence
T (n) ∈ O(nlog2 3). �e other example is binary search: its running time satis�es T (n) ≤ T (n/2)+100,
so a = 1 and b = 0 = log2 1, hence T (n) ∈ O(log n).

In parts a), b) and c) of the �rst exercise you will see some examples of recurrences that can be analyzed
in O-Notation using Master theorem. �ese three examples show that the bounds in Master theorem
are tight.

Exercise 4.1 Solving Recurrences (2 points).

For this exercise, assume that n is a power of two (that is, n = 2k, where k ∈ {0, 1, 2, 3, 4, . . .}), and
that c > 0 and d > 0 are constants.

a) Let f : N→ R+ be de�ned as f(1) = c, and f(n) = 2f
(
n
2

)
+ d ·n2 for n ≥ 2. Using mathematical

induction show that f(n) = 2d · n2 + (c− 2d) · n.

b) Let f : N→ R+ be de�ned as f(1) = c, and f(n) = 2f(n2 ) + d · n, for n ≥ 2. Using mathematical
induction show that f(n) = c · n + d · n · log2 n.



c) Let f : N→ R+ be de�ned as f(1) = c, and f(n) = 8f(n2 ) + d ·n2, for n ≥ 2. Using mathematical
induction show that f(n) = (c + d) · n3 − d · n2.

d) Consider the following recursive function:

Algorithm 1 g(m)

if m > 1 then
g(m− 1)
g(m− 1)
g(m− 1)

else
f()

Determine the number of calls of the function f in O-notation. Prove your result.

e) Consider the following recursive function (recall that in this exercise n = 2k, where k ∈ N0):

Algorithm 2 h(n)

if n > 1 then
f()
h(n/2)
f()
h(n/2)

else
f()

Using Master theorem, determine the number of calls of the function f in O-notation.

�e following de�nitions are closely related toO-Notation and are also useful in running time analysis
of algorithms.

De�nition 1 (Ω-Notation). Let f : N → R+. Ω(f) is a set of all functions g : N → R+ such that
there exists C > 0 (that may depend on g) such that for all n ∈ N , g(n) ≥ Cf(n).

De�nition 2 (Θ-Notation). Let f : N → R+. Θ(f) := O(f) ∩ Ω(f).

As forO-Notation, typicallyN = N, but sometimes we will consider other sets, e.g. N = {2, 3, 4, . . .}.

We will usually write g ≤ O(f) instead of g ∈ O(f), g ≥ Ω(f) instead of g ∈ Ω(f), and g = Θ(f)
instead of g ∈ Θ(f).

Exercise 4.2 Asymptotic notations.

a) Show that g ≥ Ω(f) if and only if f ≤ O(g).

b) Describe the (worst-case) running time of the following algorithms in Θ-Notation.

1) Karatsuba algorithm.

2) Binary Search.

3) Bubble Sort.

2



c) (�is subtask is from January 2019 exam). For each of the following claims, state whether it is
true or false.

claim true false

n
logn ≤ O(

√
n) � �

log(n!) ≥ Ω(n2) � �

nk ≥ Ω(kn), if 1 < k ≤ O(1) � �

log3 n
4 = Θ(log7 n

8) � �

d) (�is subtask is from August 2019 exam). For each of the following claims, state whether it is
true or false.

claim true false

n
logn ≥ Ω(n1/2) � �

log7(n
8) = Θ(log3(n

√
n)) � �

3n4 + n2 + n ≥ Ω(n2) � �

(∗) n! ≤ O(nn/2) � �

Note that the last claim is challenge. It was one of the hardest tasks of the exam. If you want a 6
grade, you should be able to solve such exercises.

Exercise 4.3 Search with an oracle (1 point).

Let f : N → R+ be a strictly increasing function such that f(1) = 1 and lim
x→∞

f(x) = ∞. You don’t
know anything else about f , but you can call f at any input you want and get its value. You are given
some number n ∈ N, your goal is to �ndm ∈ N such that f(m) ≤ n, and f(m+ 1) > n (note that for
any n such m always exists). Describe a procedure of �nding suchm.

A trivial solution to this problem is to call f at i = 2, 3, 4, . . . until you �nd an i with f(i) > n. �en
you outputm := i− 1. �is algorithm needs Θ(m) calls, wherem is the output of the algorithm.

Find a procedure that is more e�cient, i.e., that needs asymptotically strictly less than Θ(m) calls. How
many calls does your solution need asymptotically?

Hint: Start with �nding some number M such that f(M) > n. �e trivial algorithm needs Θ(m) steps
to achieve this. Find a more e�cient strategy.

3


