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Exercises that are marked by ∗ are challenge exercises. �ey do not count towards bonus points.

�e following theorem is very useful for running time analysis of divide-and-conquer algorithms.

�eorem 1 (Master theorem). Let T : N → R+ be a non-decreasing function such that for all k ∈ N
and n = 2k,

T (n) ≤ aT (n/2) +O(nb)

for some constants a > 0 and b ≥ 0. �en

• If b > log2 a, T (n) ∈ O(nb).

• If b = log2 a, T (n) ∈ O(nlog2 a · log n).

• If b < log2 a, T (n) ∈ O(nlog2 a).

�is theorem generalizes some results that you have seen in this course. For example, the running
time of Karatsuba algorithm satis�es T (n) ≤ 3T (n/2) + 100n, so a = 3 and b = 1 < log2 3, hence
T (n) ∈ O(nlog2 3). �e other example is binary search: its running time satis�es T (n) ≤ T (n/2)+100,
so a = 1 and b = 0 = log2 1, hence T (n) ∈ O(log n).

In parts a), b) and c) of the �rst exercise you will see some examples of recurrences that can be analyzed
in O-Notation using Master theorem. �ese three examples show that the bounds in Master theorem
are tight.

Exercise 4.1 Solving Recurrences (2 points).

For this exercise, assume that n is a power of two (that is, n = 2k, where k ∈ {0, 1, 2, 3, 4, . . .}), and
that c > 0 and d > 0 are constants.

a) Let f : N→ R+ be de�ned as f(1) = c, and f(n) = 2f
(
n
2

)
+ d ·n2 for n ≥ 2. Using mathematical

induction show that f(n) = 2d · n2 + (c− 2d) · n.

b) Let f : N→ R+ be de�ned as f(1) = c, and f(n) = 2f(n2 ) + d · n, for n ≥ 2. Using mathematical
induction show that f(n) = c · n + d · n · log2 n.



c) Let f : N→ R+ be de�ned as f(1) = c, and f(n) = 8f(n2 ) + d ·n2, for n ≥ 2. Using mathematical
induction show that f(n) = (c + d) · n3 − d · n2.

d) Consider the following recursive function:

Algorithm 1 g(m)

if m > 1 then
g(m− 1)
g(m− 1)
g(m− 1)

else
f()

Determine the number of calls of the function f in O-notation. Prove your result.

e) Consider the following recursive function (recall that in this exercise n = 2k, where k ∈ N0):

Algorithm 2 h(n)

if n > 1 then
f()
h(n/2)
f()
h(n/2)

else
f()

Using Master theorem, determine the number of calls of the function f in O-notation.

�e following de�nitions are closely related toO-Notation and are also useful in running time analysis
of algorithms.

De�nition 1 (Ω-Notation). Let f : N → R+. Ω(f) is a set of all functions g : N → R+ such that
there exists C > 0 (that may depend on g) such that for all n ∈ N , g(n) ≥ Cf(n).

De�nition 2 (Θ-Notation). Let f : N → R+. Θ(f) := O(f) ∩ Ω(f).

As forO-Notation, typicallyN = N, but sometimes we will consider other sets, e.g. N = {2, 3, 4, . . .}.

We will usually write g ≤ O(f) instead of g ∈ O(f), g ≥ Ω(f) instead of g ∈ Ω(f), and g = Θ(f)
instead of g ∈ Θ(f).

Exercise 4.2 Asymptotic notations.

a) Show that g ≥ Ω(f) if and only if f ≤ O(g).

b) Describe the (worst-case) running time of the following algorithms in Θ-Notation.

1) Karatsuba algorithm.

2) Binary Search.

3) Bubble Sort.
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c) (�is subtask is from January 2019 exam). For each of the following claims, state whether it is
true or false.

claim true false

n
logn ≤ O(

√
n) � �

log(n!) ≥ Ω(n2) � �

nk ≥ Ω(kn), if 1 < k ≤ O(1) � �

log3 n
4 = Θ(log7 n

8) � �

d) (�is subtask is from August 2019 exam). For each of the following claims, state whether it is
true or false.

claim true false

n
logn ≥ Ω(n1/2) � �

log7(n
8) = Θ(log3(n

√
n)) � �

3n4 + n2 + n ≥ Ω(n2) � �

(∗) n! ≤ O(nn/2) � �

Note that the last claim is challenge. It was one of the hardest tasks of the exam. If you want a 6
grade, you should be able to solve such exercises.

Exercise 4.3 Search with an oracle (1 point).

Let f : N → R+ be a strictly increasing function such that f(1) = 1 and lim
x→∞

f(x) = ∞. You don’t
know anything else about f , but you can call f at any input you want and get its value. You are given
some number n ∈ N, your goal is to �ndm ∈ N such that f(m) ≤ n, and f(m+ 1) > n (note that for
any n such m always exists). Describe a procedure of �nding suchm.

A trivial solution to this problem is to call f at i = 2, 3, 4, . . . until you �nd an i with f(i) > n. �en
you outputm := i− 1. �is algorithm needs Θ(m) calls, wherem is the output of the algorithm.

Find a procedure that is more e�cient, i.e., that needs asymptotically strictly less than Θ(m) calls. How
many calls does your solution need asymptotically?

Hint: Start with �nding some number M such that f(M) > n. �e trivial algorithm needs Θ(m) steps
to achieve this. Find a more e�cient strategy.
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